Svalbard, located between 76°30'N and 80°50'N, is among the regions in the world with the most rapid temperature increase. We processed a cloud-free time-series of MODIS-NDVI for Svalbard. The dataset is interpolated to daily data during the 2000-2022 period with 232 m pixel resolution. The onset of growth, with a clear phenological definition, has been mapped each year. Then the integrated NDVI from the onset (O) of growth each year to the time of average (2000-2022) peak (P) of growth (OP NDVI) have been calculated. OP NDVI has previously shown high correlation with field-based tundra productivity. Daily mean temperature data from 11 meteorological stations are compared with the NDVI data. The OP NDVI values show very high and significant correlation with growing degree days computed from onset to time of peak of growth for all the meteorological stations used. On average for the entire Svalbard, the year 2016 first had the highest greening (OP NDVI values) recorded since the year 2000, then the greening in 2018 surpassed 2016, then 2020 surpassed 2018, and finally 2022 was the year with the overall highest greening by far for the whole 2000-2022 period. This shows a rapid recent greening of Svalbard very strongly linked to temperature increase, although there are regional differences: the eastern parts of Svalbard show the largest variability between years, most likely due to variability in the timing of sea-ice break-up in adjacent areas. Finally, we find that areas dominated by manured moss-tundra in the polar desert zone require new methodologies, as moss does not share the seasonal NDVI dynamics of tundra communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174130 | DOI Listing |
Mar Pollut Bull
December 2024
Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea. Electronic address:
The routine use of chemicals in polar regions contributes to unexpected occurrence of micropollutants, with sewage discharge as a prominent pollution source. The aim of this study was to identify and quantify micropollutants in polar environments near potential point sources using non-target analysis (NTA) with liquid chromatography high-resolution mass spectrometry. Seawater samples were collected from Ny-Ålesund, Svalbard and Marian Cove, King George Island, in 2023.
View Article and Find Full Text PDFSci Total Environ
October 2024
Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER, United Kingdom. Electronic address:
Svalbard, located between 76°30'N and 80°50'N, is among the regions in the world with the most rapid temperature increase. We processed a cloud-free time-series of MODIS-NDVI for Svalbard. The dataset is interpolated to daily data during the 2000-2022 period with 232 m pixel resolution.
View Article and Find Full Text PDFG3 (Bethesda)
July 2024
Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.
Snow algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High-quality snow algae genomes are needed for studies on their unique physiology, adaptive mechanisms, and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight.
View Article and Find Full Text PDFSci Rep
October 2023
Centre for Autonomous Marine Operations and Systems (AMOS), Trondheim Biological Station, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Arctic macroalgae species have developed different growth strategies to survive extreme seasonal changes in irradiance in polar regions. We compared photophysiological parameters such as the light saturation parameter (E) and pigment composition of green, red, and brown macroalgae collected in January (Polar Night) and October 2020 (end of the light season). Macroalgae in January appeared healthier (morphologically) and had longer lamina (new growth) than those in October.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!