Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. Female and male rats were exposed to free access to ethanol (15% v/v) and (30% v/v) and water for five weeks, and on Week 6, rats were administered 100 mg/kg (i.p) of MC-100093 or saline for five days. MC-100093 reduced ethanol consumption in both male and female P rats from Day 1-5. Additionally, MC-100093 upregulated GLT-1 and xCT expression in the mPFC and NAc subregions as compared to ethanol-saline groups in female and male rats. Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407434PMC
http://dx.doi.org/10.1016/j.neuroscience.2024.06.017DOI Listing

Publication Analysis

Top Keywords

glt-1 xct
24
xct expression
24
male female
16
female rats
16
chronic ethanol
12
ethanol consumption
12
female male
12
male rats
12
upregulated glt-1
12
ethanol intake
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!