The nucleolus functions as a multi-layered regulatory hub for ribosomal RNA (rRNA) biogenesis and ribosome assembly. Long noncoding RNAs (lncRNAs) in the nucleolus, originated from transcription by different RNA polymerases, have emerged as critical players in not only fine-tuning rRNA transcription and processing, but also shaping the organization of the multi-phase nucleolar condensate. Here, we review the diverse molecular mechanisms by which functional lncRNAs operate in the nucleolus, as well as their profound implications in a variety of biological processes. We also highlight the development of emerging molecular tools for characterizing and manipulating RNA function in living cells, and how application of such tools in the nucleolus might enable the discovery of additional insights and potential therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sbi.2024.102866 | DOI Listing |
Cell Commun Signal
January 2025
Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.
View Article and Find Full Text PDFAnal Chem
January 2025
Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China.
Understanding the molecular energy metabolism of single cells in the nucleolus stress response induced by mild-photothermal therapy (mPTT) is of great importance for investigating the photothermal lethal mechanism. Herein, we successfully fabricated a "turn-on"-type fluorescent nanoprobe based on the fluorescently labeled aptamers (FAM-ATP-apt and Cy3-GTP-apt) and TiCT MXene. When the adapters on the nanoprobes bonded to intracellular ATP and GTP, the fluorescence of the nanoprobes was restored.
View Article and Find Full Text PDFCase Rep Pathol
January 2025
Cardio-Thoracic Surgery, Zhangqiu District Hospital, Jinan City, Shandong Province, China.
Myoepithelioma-like tumor of the vulvar region (MELTVR) is a rare mesenchymal tumor that typically arises in the female vulva. Here, we report a case of a 48-year-old woman who presented with a 2-year history of subcutaneous mass in the vulvar region. As the mass rapidly increased in the last 2 months, personal slight swelling pain appeared.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
C1orf115 has been identified in high-throughput screens as a regulator of multidrug resistance possibly mediated through an interaction with ATP-dependent membrane transporter ABCB1. Here we show that C1orf115 not only shares structural similarities with FACI/C11orf86 to interact with clathrin adaptors to undergo endocytosis, but also induces ABCA1 transcription to promote cholesterol efflux. C1orf115 consists of an N-terminal intrinsically disordered region and a C-terminal α-helix.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!