Recovering phosphorus (P) and nitrogen (N) from wastewater not only contributes to environmental protection but also aligns with sustainable development goals. This study employed a magnesium-air fuel cell (Mg-O-FC) to extract P and N from wastewater in the form of struvite (MgNH·6HO), based on the removal efficiency of ammonia and phosphate, electricity generation capacity and struvite purity to determine the optimal operation parameters. These parameters included hydraulic retention time (HRT), service life of magnesium sheet, and precipitation discharge frequency. The results showed that the removal efficiency of ammonia from 0 to 4h was 55.99%, and that from 4 to 12h was only 15.74%. The phosphate removal efficiency in the initial cycle was 97.68% but decreased to 63.25% after 24h. The phosphate removal rate in 2 min increased by 145% when the precipitation discharge frequency increased from 4 h/time to 24 h/time. Consequently, the HRT, service life of the magnesium sheet, and precipitation discharge frequency were selected as 4 h, 24 h, and 24 h/time. These optimized conditions provide valuable insights for the practical implementation of Mg-O-FC in recovering N and P from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121344 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
APESA Pôle valorisation, Montardon, France.
This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.
Real-time monitoring of rice-wheat rotation areas is crucial for improving agricultural productivity and ensuring the overall yield of rice and wheat. However, the current monitoring methods mainly rely on manual recording and observation, leading to low monitoring efficiency. This study addresses the challenges of monitoring agricultural progress and the time-consuming and labor-intensive nature of the monitoring process.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Food Science and Biotechnology, Gachon University 1342 Seongnamdaero Sujeong-gu Seongnam-si 13120 Republic of Korea
This study focuses on the synthesis, characterization, and evaluation of the photocatalytic efficiency of bismuth-based metal-organic frameworks (Bi-MOFs) and their derivatives, specifically Ag/Bi-MOF and NH /Ag/Bi-MOF, in the degradation of tetracycline (TC) and sulfamethoxazole (SMX) under visible light irradiation. Bi-MOFs are promising photocatalysts due to their large surface area, tunable porosity, and unique electronic properties that are favorable for visible light absorption. In this study, Bi-MOFs were synthesized using a solvothermal method, with the incorporation of silver (Ag) and ammonium (NH ) ions to enhance their photocatalytic performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!