And sentences associated with these attributes and relationships have been neglected. in this paper ►We propose an end-to-end model called Knowledge Graph Enhanced neural network (KGENet) to address the above shortcomings. specifically ►We first construct a disease knowledge graph that focuses on the multi-view disease attributes of ICD codes and the disease relationships between these codes. we also use a long sequence encoder to get EHR document representation. most importantly ►KGENet leverages multi-view disease attributes and structured disease relationships for knowledge enhancement through hybrid attention and graph propagation ►Respectively. furthermore ►The above processes can provide attribute-aware and relationship-augmented explainability for the model prediction results based on our disease knowledge graph. experiments conducted on the MIMIC-III benchmark dataset show that KGENet outperforms state-of-the-art models in both model effectiveness and explainability Electronic health record (EHR) coding assigns International Classification of Diseases (ICD) codes to each EHR document. These standard medical codes represent diagnoses or procedures and play a critical role in medical applications. However, EHR is a long medical text that is difficult to represent, the ICD code label space is large, and the labels have an extremely unbalanced distribution. These factors pose challenges to automatic EHR coding. Previous studies have not explored the disease attributes (e.g., symptoms, tests, medications) of ICD codes and the disease relationships (e.g., causes, risk factors, comorbidities) between them. In addition, the important roles of medical.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2024.102916DOI Listing

Publication Analysis

Top Keywords

knowledge graph
16
ehr coding
12
disease knowledge
12
disease attributes
12
icd codes
12
disease relationships
12
disease
9
hybrid attention
8
multi-view disease
8
codes disease
8

Similar Publications

BioGSF: a graph-driven semantic feature integration framework for biomedical relation extraction.

Brief Bioinform

November 2024

Suzhou Key Lab of Multi-modal Data Fusion and Intelligent Healthcare, No. 1188 Wuzhong Avenue, Wuzhong District Suzhou, Suzhou 215004, China.

The automatic and accurate extraction of diverse biomedical relations from literature constitutes the core elements of medical knowledge graphs, which are indispensable for healthcare artificial intelligence. Currently, fine-tuning through stacking various neural networks on pre-trained language models (PLMs) represents a common framework for end-to-end resolution of the biomedical relation extraction (RE) problem. Nevertheless, sequence-based PLMs, to a certain extent, fail to fully exploit the connections between semantics and the topological features formed by these connections.

View Article and Find Full Text PDF

Artificial intelligence plays an indispensable role in improving productivity and promoting social development, and causal discovery is one of the extremely important research directions in this field. Acyclic directed graphs (DAGs) are the most commonly used tool in causal modeling because of their excellent interpretability and structural properties. However, in the face of insufficient data, the accuracy and efficiency of DAGs learning are greatly reduced, resulting in a false perception of causality.

View Article and Find Full Text PDF

Few-Shot Graph Anomaly Detection via Dual-Level Knowledge Distillation.

Entropy (Basel)

January 2025

National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China.

Graph anomaly detection is crucial in many high-impact applications across diverse fields. In anomaly detection tasks, collecting plenty of annotated data tends to be costly and laborious. As a result, few-shot learning has been explored to address the issue by requiring only a few labeled samples to achieve good performance.

View Article and Find Full Text PDF

Introduction: Numerous studies have concluded that the functional ingredients benefit human health. Similarly, present times have seen exponential growth in functional food in bakery product segments like breads and biscuits. However, there is a lack of information on functional ingredients and their usefulness in developing functional bakery products.

View Article and Find Full Text PDF

Background: Recent advancements in single-cell RNA sequencing have greatly expanded our knowledge of the heterogeneous nature of tissues. However, robust and accurate cell type annotation continues to be a major challenge, hindered by issues such as marker specificity, batch effects, and a lack of comprehensive spatial and interaction data. Traditional annotation methods often fail to adequately address the complexity of cellular interactions and gene regulatory networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!