Since the survival of lymphoma patients who experience disease progression or relapse remains very poor, new therapeutic approaches and effective drugs are urgently needed. Here we show that auranofin (AF), an anti-rheumatoid drug thought to inhibit thioredoxin reductases (TXNRDs) as its mechanism of action, exhibited potent activity against multiple cancer types, especially effective against B cell lymphoma. Surprisingly, a knockdown of TXNRD1 and TXNRD2 did not cause significant cytotoxicity, suggesting that abrogation of TXNRD enzyme per se was insufficient to cause cancer cell death. Further mechanistic study showed that the interaction of AF with TXNRD could convert this antioxidant enzyme to a ROS-generating molecule via disrupting its electron transport, leading to a leak of electrons that interact with molecular oxygen to form superoxide. AF also suppressed energy metabolism by inhibiting both mitochondria complex II and the glycolytic enzyme GAPDH, leading to a significant depletion of ATP and inhibition of cancer growth in vitro and in vivo. Importantly, we found that the AF-mediated ROS stress could induce PD-L1 expression, revealing an unwanted effect of AF in causing immune suppression. We further showed that a combination of AF with anti-PD-1 antibody could enhance the anticancer activity in a syngeneic immune-competent mouse B-cell lymphoma model. Our study suggests that AF could be a potential drug for lymphoma treatment, and its combination with immune checkpoint inhibitors would be a logical strategy to increase the therapeutic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254835 | PMC |
http://dx.doi.org/10.1016/j.redox.2024.103245 | DOI Listing |
Front Immunol
January 2025
Department of Oncology, Suining Central Hospital, Suining, Sichuan, China.
Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Urology, Beilun People's Hospital, Ningbo, Zhejiang, China.
Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.
View Article and Find Full Text PDFJDS Commun
January 2025
School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061.
Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex).
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade de Campinas Centro de Pesquisa em Obesidade e Comorbidades CampinasSP Brasil Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil.
The hypothalamus is a master regulator of energy balance in the body. First-order hypothalamic neurons localized in the arcuate nucleus sense systemic signals that indicate the energy stores in the body. Through distinct projections, arcuate nucleus neurons communicate with second-order neurons, which are mostly localized in the paraventricular nucleus and in the lateral hypothalamus.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade Estadual do Ceará Instituto Superior de Ciências Biomédicas Laboratório de Fisiologia Endócrina e Metabolismo FortalezaCE Brasil Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil.
Objective: This study aimed to investigate the redox balance in subcutaneous and retroperitoneal fat pads of male and female Wistar rats.
Materials And Methods: The study analyzed the activity and gene expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, along with the production of NADPH oxidases dependent on HO and gene expression of NOX1, NOX2, and NOX4.
Results: The retroperitoneal fat pad in males compared with females had greater NOX2 and NOX4 expression, along with higher superoxide dismutase activity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!