Circular RNAs and the JAK/STAT pathway: New frontiers in cancer therapeutics.

Pathol Res Pract

Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia.

Published: August 2024

Circular RNAs, known as circRNAs, have drawn more attention to cancer biology in the last few years. Novel functions of circRNAs in cancer therapy open promising prospects for personalized medicine. This review focuses on the molecular properties and potential of circRNAs as biomarkers or therapeutic targets in cancer treatment. Unique properties of circular RNAs associated with a circular form provide stability and resilience to RNA exonuclease degradation. Circular RNAs' most important characteristic is that they are involved in the JAK/STAT pathway associated with oncogenesis. Notably, their deregulation has been reported in multiple carcinomas due to involvement in JAK/STAT signaling cascade modulation. Increased knowledge about circRNAs' interaction with the JAK/STAT pathway leads to the emergence of new possibilities for targeted cancer therapy. In addition, since circRNAs demonstrate tissue-relatedness of expression, they may be a reliable biomarker for predicting and diagnosing cancer. With the development of new technologies for targeting circRNAs, novel therapeutics can be produced that offer more personalized cancer treatment options based on the nature of the patient. The present review explores the exciting prospects of circRNAs for transforming cancer treatment into personalized medicine. It describes the current understanding of circRNA biology, its relationship to tumorigenesis, and possible targeting methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2024.155408DOI Listing

Publication Analysis

Top Keywords

circular rnas
12
jak/stat pathway
12
cancer treatment
12
cancer
8
cancer therapy
8
personalized medicine
8
circrnas
6
circular
5
jak/stat
4
rnas jak/stat
4

Similar Publications

Recently, there has been growing interest in the role of circular RNAs (circRNAs) in the progression of human cancers. Cellular senescence, a known anti-tumour mechanism, has been observed in several types of cancer. However, the regulatory interplay of circRNAs with cellular senescence in pancreatic cancer (PC) is still unknown.

View Article and Find Full Text PDF

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer.

View Article and Find Full Text PDF

Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced.

View Article and Find Full Text PDF

Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection.

Adv Sci (Weinh)

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Laboratory Medicine and Biotechnology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.

Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!