Rapid eye movement sleep (REMS) is increasingly suggested as a discriminant sleep state for subtle signs of age-related neurodegeneration. While REMS expression is under strong circadian control and circadian dysregulation increases with age, the association between brain aging and circadian REMS regulation has not yet been assessed. Here, we measure the circadian amplitude of REMS through a 40-h in-lab multiple nap protocol in controlled laboratory conditions, and brain microstructural integrity with quantitative multi-parameter mapping (MPM) imaging in 86 older individuals. We show that reduced circadian REMS amplitude is related to lower magnetization transfer saturation (MTsat), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*) values in several white matter regions mostly located around the lateral ventricles, and with lower R1 values in grey matter clusters encompassing the hippocampus, parahippocampus, thalamus and hypothalamus. Our results further highlight the importance of considering circadian regulation for understanding the association between sleep and brain structure in older individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193799 | PMC |
http://dx.doi.org/10.1038/s42003-024-06415-y | DOI Listing |
Acta Pharmacol Sin
January 2025
Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands.
Daylength (i.e., photoperiod) provides essential information for seasonal adaptations of organisms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
Background: Sleep disturbances are associated with the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD) and primary tauopathies. We have previously shown that APOE4, the strongest genetic risk factor for AD, directly influences the severity of key pathological hallmarks of neurodegeneration including tau deposition, microglial reactivity and brain atrophy. Sleep loss influences tau accumulation and microglial reactivity in both mice and humans, suggesting that sleep loss may contribute to neurodegeneration not only by influencing protein aggregation, but also through an immune mechanism.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC, USA.
Background: Alzheimer's disease (AD) is a world-wide healthcare crisis among older adults. Sex, aging, and apolipoprotein E (APOE) genotype are among the most impactful risk factors for AD. Sleep is beneficial for memory and changes with age.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, United States.
Background: Due to its location, the ocular surface is exposed to environmental microbes. Innate immune cells including macrophages are first line defense against infections. exposure to high glucose as well as diabetes-associated hyperglycemia has been shown to affect innate immune cell function and population.
View Article and Find Full Text PDFOphthalmic Genet
January 2025
Department of Ophthalmology, Unidade de Saúde Local de São João, Porto, Portugal.
Purpose: We present the case of a newborn with right anophthalmia, left congenital cystic eye, and two novel variants in the gene. This report provides a comprehensive discussion of the clinical presentation, management strategies, and long-term follow-up for this rare condition.
Methods: A thorough ophthalmic examination was performed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!