In 2022, Houston, TX became a nexus for field campaigns aiming to further our understanding of the feedbacks between convective clouds, aerosols and atmospheric boundary layer (ABL) properties. Houston's proximity to the Gulf of Mexico and Galveston Bay motivated the collection of spatially distributed observations to disentangle coastal and urban processes. This paper presents a value-added ABL dataset derived from observations collected by eight research teams over 46 days between 2 June - 18 September 2022. The dataset spans 14 sites distributed within a ~80-km radius around Houston. Measurements from three types of instruments are analyzed to objectively provide estimates of nine ABL parameters, both thermodynamic (potential temperature, and relative humidity profiles and thermodynamic ABL depth) and dynamic (horizontal wind speed and direction, mean vertical velocity, updraft and downdraft speed profiles, and dynamical ABL depth). Contextual information about cloud occurrence is also provided. The dataset is prepared on a uniform time-height grid of 1 h and 30 m resolution to facilitate its use as a benchmark for forthcoming numerical simulations and the fundamental study of atmospheric processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193771 | PMC |
http://dx.doi.org/10.1038/s41597-024-03477-9 | DOI Listing |
Nanotechnology
January 2025
Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Bloco 922, 60455-900, Fortaleza, 60455-900, BRAZIL.
We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States.
Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.
View Article and Find Full Text PDFPLoS One
January 2025
Institute For Chengdu-Chongqing Economic Zone Development, Chongqing Technology and Business University, Chongqing, China.
The coupled development of new-type urbanization (NTU) and rural revitalization (RR) represents a critical proposition put forth by China for forging a novel paradigm of urban-rural relationship. Initially, this study employs the entropy method to quantify NTU and RR. Subsequently, it carries out a comprehensive analysis concerning their coupled relationship with the relative development degree model (RDDM), coupled coordination degree model (CCDM), Dagum Gini coefficient, kernel density estimation, and Tobit model.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!