Fetal growth restriction (FGR) is a clinically important human pregnancy disorder that is thought to originate early in pregnancy and while its aetiology is not well understood, the disorder is associated with placental insufficiency. Currently treatment for FGR is limited by increased surveillance using ultrasound monitoring and premature delivery, or corticosteroid medication in the third trimester to prolong pregnancy. There is a pressing need for novel strategies to detect and treat FGR at its early stage. Homeobox genes are well established as master regulators of early embryonic development and increasing evidence suggests they are also important in regulating early placental development. Most important is that specific homeobox genes are abnormally expressed in human FGR. This review focusses on identifying the molecular pathways controlled by homeobox genes in the normal and FGR-affected placenta. This information will begin to address the knowledge gap in the molecular aetiology of FGR and lay the foundation for identifying potential diagnostic and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2024.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!