A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced lactic acid production through enzymatic hydrolysis: Assessing impact of varied enzyme loadings on co-fermentation of swine manure and apple waste. | LitMetric

Anaerobic co-fermentation of swine manure (SM) and apple waste (AW) restricts by the slow hydrolysis of substrates with complex structures, which subsequently leads to low lactic acid (LA) production. Therefore, a novel strategy based on enzymatic pretreatment for improving LA production from anaerobic co-fermentation of SM and AW was proposed in this study. The results indicated that the maximal LA concentration increased from 35.89 ± 1.84 to 42.70 ± 2.18 g/L with the increase of enzyme loading from 0 to 300 U/g VS. Mechanism exploration indicated that enzymatic pretreatment significantly promoted the release and hydrolysis of insoluble organic matter from fermentation substrate, thus providing an abundance of reaction intermediates that were directly available for LA production. Additionally, bacteria analysis revealed that the high concentration of LA was associated with the prevalence of Lactobacillus. This study offered an environmental-friendly strategy for promoting SM and AW hydrolysis and provided a viable approach for recovering valuable products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131012DOI Listing

Publication Analysis

Top Keywords

lactic acid
8
acid production
8
co-fermentation swine
8
swine manure
8
manure apple
8
apple waste
8
anaerobic co-fermentation
8
enzymatic pretreatment
8
enhanced lactic
4
production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!