High-resolution soil moisture data is crucial in the development of hydrological applications as it provides detailed insights into the spatiotemporal variability of soil moisture. The emergence of advanced remote sensing technologies, alongside the widespread adoption of machine learning, has facilitated the creation of continental and global soil moisture products both at fine spatial (1 km) and temporal (daily) scales. Some of these products rely on several data sources as input (satellite, in situ, modelling), and therefore an evaluation of their actual spatial and temporal resolution is required. Nevertheless, the absence of appropriate ground monitoring networks poses a significant challenge for this assessment. In this study, five high-resolution (1 km) soil moisture products (S1-RT1, S1-COP, SMAP-Planet, SMAP-NSIDC, and ESACCI-Zheng) were analysed and evaluated throughout the Italian territory, together with a coarse resolution (12.5 km) dataset for comparison (ASCAT-HSAF). The main objective is to investigate their actual spatial and temporal resolution, and accuracy. Firstly, a cross-comparison of the products in space and time is carried out, including the use of triple collocation analysis. Secondly, an application-based assessment is implemented, considering irrigation, fire, drought, and precipitation case studies. The results clearly indicate the limitations and the potential of each product. Sentinel-1 based products (S1-COP and S1-RT1) are found able to reproduce high-resolution spatial patterns by detecting localised events for irrigation, fire, and precipitation. Their lower temporal resolution leads to accuracies lower than that of the SMAP-Planet product, and comparable with SMAP-NSIDC and ESACCI-Zheng products. However, SMAP-Planet is found to have an actual spatial resolution coarser than 1 km. The study highlights the need for further research to improve the high-resolution soil moisture products, and particularly to determine accurately the spatial resolution represented in soil moisture products. At the same time, the analysed products are found able to address high-resolution applications for the first time, opening promising activities for their operational use in hydrology and water resources management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174087DOI Listing

Publication Analysis

Top Keywords

soil moisture
28
moisture products
20
actual spatial
16
spatial resolution
12
temporal resolution
12
products
10
high-resolution soil
8
spatial temporal
8
smap-nsidc esacci-zheng
8
irrigation fire
8

Similar Publications

The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.

View Article and Find Full Text PDF

Long-term positioning experiments have demonstrated significant benefits in agricultural production and environmental protection. Faba bean-wheat intercropping with nitrogen fertiliser can effectively mitigate the occurrence of faba bean wilt disease. Identifying the optimal nitrogen application rate is essential for enhancing the disease control efficacy of intercropping.

View Article and Find Full Text PDF

Exploring the link between soil health and crop productivity.

Ecotoxicol Environ Saf

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Understanding the complex interactions of plants and soils in the face of global food security and environmental degradation challenges is critical to the future of sustainable agriculture. This review discusses the important link between soil health and crop productivity by providing and comprehensive assessment of soil properties and management methods. By examining the physical, chemical, and biological properties of soil, it uncovers the key limitations posed by the soil environment on crop growth.

View Article and Find Full Text PDF

Study on the effect of water content on physical properties of bentonite.

PLoS One

January 2025

Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.

Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.

View Article and Find Full Text PDF

Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!