Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder.

Psychiatry Res Neuroimaging

Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom; NIHR Mental Health (MindTech) Health Technology Collaboration, University of Nottingham, Nottingham, United Kingdom.

Published: August 2024

Transcranial magnetic stimulation (TMS) is an FDA-approved neuromodulation treatment for major depressive disorder (MDD), thought to work by altering dysfunctional brain connectivity pathways, or by indirectly modulating the activity of subcortical brain regions. Clinical response to TMS remains highly variable, highlighting the need for baseline predictors of response and for understanding brain changes associated with response. This systematic review examined brain connectivity features, and changes in connectivity features, associated with clinical improvement following TMS in MDD. Forty-one studies met inclusion criteria, including 1097 people with MDD. Most studies delivered one of two types of TMS to left dorsolateral prefrontal cortex and measured connectivity using resting-state functional MRI. The subgenual anterior cingulate cortex was the most well-studied brain region, particularly its connectivity with the TMS target or with the "executive control network" of brain regions. There was marked heterogeneity in findings. There is a need for greater understanding of how cortical TMS modulates connectivity with, and the activity of, subcortical regions, and how these effects change within and across treatment sessions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pscychresns.2024.111846DOI Listing

Publication Analysis

Top Keywords

connectivity features
12
features associated
8
associated response
8
transcranial magnetic
8
magnetic stimulation
8
major depressive
8
depressive disorder
8
brain connectivity
8
activity subcortical
8
brain regions
8

Similar Publications

Immunosenescence: Aging and Immune System Decline.

Vaccines (Basel)

November 2024

Department of Biological Sciences, Kean University, Union, NJ 07083, USA.

Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells.

View Article and Find Full Text PDF

FP-YOLOv8: Surface Defect Detection Algorithm for Brake Pipe Ends Based on Improved YOLOv8n.

Sensors (Basel)

December 2024

School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China.

To address the limitations of existing deep learning-based algorithms in detecting surface defects on brake pipe ends, a novel lightweight detection algorithm, FP-YOLOv8, is proposed. This algorithm is developed based on the YOLOv8n framework with the aim of improving accuracy and model lightweight design. First, the C2f_GhostV2 module has been designed to replace the original C2f module.

View Article and Find Full Text PDF

Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection.

Sensors (Basel)

December 2024

School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.

RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance.

View Article and Find Full Text PDF

G-RCenterNet: Reinforced CenterNet for Robotic Arm Grasp Detection.

Sensors (Basel)

December 2024

School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.

In industrial applications, robotic arm grasp detection tasks frequently suffer from inadequate accuracy and success rates, which result in reduced operational efficiency. Although existing methods have achieved some success, limitations remain in terms of detection accuracy, real-time performance, and generalization ability. To address these challenges, this paper proposes an enhanced grasp detection model, G-RCenterNet, based on the CenterNet framework.

View Article and Find Full Text PDF

Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!