Glucose-induced insulin secretion is thought to be mediated by submicromolar increases in intracellular Ca2+, although the intracellular processes are not well understood. We have used the previously characterized digitonin-permeabilized insulin-secreting pancreatic islet model to study the role of myo-inositol 1,4,5-trisphosphate (IP3), a putative second messenger for mobilization of intracellular Ca2+. Ca2+ efflux from the endoplasmic reticulum was studied with or without vanadate present to inhibit Ca2+ reuptake. IP3 (10 microM), at a free Ca2+ level of 0.06 microM, increased Ca2+ release by 30% and, when vanadate was present, by 50%. Maximal and half-maximal Ca2+ release was observed at 10 microM- and 2.5 microM-IP3, respectively. IP3 provoked a rapid release that was followed by slow reuptake. Reuptake was diminished in the presence of vanadate. Inositol 1,4-bisphosphate, inositol 1-phosphate and other phosphoinositide metabolites did not have any significant effect. Because increases in Ca2+ levels in the submicromolar range have been previously shown to induce insulin release in digitonin-permeabilized islets, our results are consistent with the concept of IP3 serving as a second messenger for insulin secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1144928PMC
http://dx.doi.org/10.1042/bj2270965DOI Listing

Publication Analysis

Top Keywords

ca2+
9
pancreatic islet
8
islet model
8
myo-inositol 145-trisphosphate
8
insulin secretion
8
intracellular ca2+
8
second messenger
8
ca2+ release
8
digitonin-permeabilized pancreatic
4
model myo-inositol
4

Similar Publications

Electrochemiluminescence (ECL) of luminol and electrocatalysis by Prussian blue were compared for the selective detection of HO at the boron-doped diamond (BDD) electrodes. The HO detection was optimized by various parameters such as the applied potential at pH 7.4, which is a physiological value usually used for HO detection in enzymatic reactions.

View Article and Find Full Text PDF

Calcium levels modulate embryo yield in microspore embryogenesis.

Front Plant Sci

January 2025

Cell Biology Group - Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) Institute, Universitat Politècnica de València, Valencia, Spain.

Calcium (Ca) is a universal signaling cation with a prominent role as second messenger in many different plant processes, including sexual reproduction. However, there is much less knowledge about the involvement of Ca during embryogenesis processes. In this work we performed a study of Ca levels during the different stages of microspore embryogenesis in , with special attention to how Ca can influence the occurrence of different embryogenic structures with different embryogenic potential.

View Article and Find Full Text PDF

Introduction: Chimeric antigen receptor (CAR) expressing T-cells have shown great promise for the future of cancer immunotherapy with the recent clinical successes achieved in treating different hematologic cancers. Despite these early successes, several challenges remain in the field that require to be solved for the therapy to be more efficacious. One such challenge is the lack of long-term persistence of CD28 based CAR T-cells in patients.

View Article and Find Full Text PDF

The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide-europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) a one-step process combining microarc oxidation (MAO) and doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO coatings without altering their morphology.

View Article and Find Full Text PDF

Transcellular regulation of ETI-induced cell death.

Trends Plant Sci

January 2025

State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an, 271018, China. Electronic address:

To address the persistent challenge of cell death spread and limitation during effector-triggered immunity (ETI), we propose a 'concentric circle' model. This model outlines a regulatory framework, integrating multiple cells and diverse signaling molecules, including salicylic acid (SA), jasmonic acid (JA), and Ca. By accounting for the varying concentrations and spatiotemporal distributions of these molecules, our model aims for precision in immune defense and regulated cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!