Introduction: Histoplasma capsulatum is the etiological agent of histoplasmosis, the most common endemic pulmonary mycosis. Itraconazole (ITZ) is the choice for mild disease and a step-down therapy in severe and disseminated clinical presentations. Drug encapsulation into nanoparticles (NPs) is an alternative to improve drug solubility and bioavailability, reducing undesirable interactions and drug degradation and reaching the specific therapeutic target with lower doses.
Objective: evaluate the antifungal and immunomodulatory effect of ITZ encapsulated into poly(lactic-co-glycolic acid) (PLGA) NPs, administrated orally and intraperitoneally in an in vivo histoplasmosis model.
Results: After intranasal infection and treatment of animals with encapsulated ITZ by intraperitoneal and oral route, fungal burden control, biodistribution, immune response, and histopathology were evaluated. The results showed that the intraperitoneal administered and encapsulated ITZ has an effective antifungal effect, significantly reducing the Colony-Forming-Units (CFU) after the first doses and controlling the infection dissemination, with a higher concentration in the liver, spleen, and lung compared to the oral treatment. In addition, it produced a substantial immunomodulatory effect on pro- and anti-inflammatory cytokines and immune cell infiltrates confirmed by histopathology.
Conclusions: Overall, results suggest a synergistic effect of the encapsulated drug and the immunomodulatory effect contributing to infection control, preventing their dissemination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mycmed.2024.101494 | DOI Listing |
Saudi Pharm J
December 2024
Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes.
View Article and Find Full Text PDFDrug Dev Ind Pharm
September 2024
Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
Objective: Itraconazole (ITZ), a widely used systemic antifungal drug, has been ingeniously repurposed for its antitumor effects. In the present work, we have prepared and optimized the ITZ-loaded transferosomes by Quality by Design (QbD) approach and repurposed them for skin cancer.
Methods: The transferosomal formulation was optimized by employing a QbD approach with the design of experiment.
J Mycol Med
September 2024
Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia; School of Health Sciences, Universidad Pontificia Bolivariana, Cl. 78b #72A - 109, Medellín 050036, Colombia. Electronic address:
Introduction: Histoplasma capsulatum is the etiological agent of histoplasmosis, the most common endemic pulmonary mycosis. Itraconazole (ITZ) is the choice for mild disease and a step-down therapy in severe and disseminated clinical presentations. Drug encapsulation into nanoparticles (NPs) is an alternative to improve drug solubility and bioavailability, reducing undesirable interactions and drug degradation and reaching the specific therapeutic target with lower doses.
View Article and Find Full Text PDFEncapsulating drugs into functionalized nanoparticles (NPs) is an alternative to reach the specific therapeutic target with lower doses. However, when the NPs are in contact with physiological media, proteins adsorb on their surfaces, forming a protein corona (PC) biomolecular layer, acquiring a distinct biological identity that alters their interactions with cells. Itraconazole (ITZ), an antifungal agent, is encapsulated into PEGylated and/or functionalized NPs with high specificity for macrophages.
View Article and Find Full Text PDFPharmaceutics
December 2022
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
Numerous obstacles challenge the treatment of fungal infections, including the uprising resistance and the low penetration of available drugs. One of the main active agents against fungal infections is itraconazole (ITZ), with activity against a broad spectrum of fungi while having few side effects. The aim of this study was to design ufasomes, oleic acid-based colloidal carriers, that could encapsulate ITZ to improve its penetration power.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!