Al-PILC was used to catalyze the chlorine oxidation of Mn(II) in aqueous solution. The effects of various catalysts, catalyst dosage, chlorine dosage, pH value, temperature and organic content on the oxidation process were investigated. Results show that 1.5 mg/L chlorine can quickly oxidize Mn(II) from 0.5 mg/L to less than 0.04 mg/L with 10 mg/L Al-PILC. Using catalysts with higher porosity and higher SA, increase in chlorine concentration, increase in catalyst dosage, higher pH, and higher temperature can significantly enhance the rate of Mn(II) catalytic oxidation. The Mn(II) oxidation process includes the homogeneous oxidation, catalytic oxidation on the surface of the catalysts and self-catalytic oxidation produced by the newly produced MnO. Al-PILC surface provides active sites for chlorine oxidation Mn(II) in the water, and also provides binding sites for the newly produced MnO, which has higher catalytic activity and thus has an self-catalytic oxidation effect. The higher the porosity and SA of Al-PILC, the more catalytic oxidation active sites and loading sites, and the better the catalytic oxidation effect. The study promotes the understanding of chlorine catalyzed oxidation Mn(II) in aqueous solution, but also provide important guide to study newly efficient catalysts to oxidize Mn(II) with chlorine in aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!