Oocyte cryopreservation is increasingly being used in reproductive technologies for conservation and breeding purposes. Further development of oocyte cryopreservation techniques requires interdisciplinary insights in the underlying principles of cryopreservation. This review aims to serve this purpose by: (1) highlighting that preservation strategies can be rationally designed, (2) presenting mechanistic insights in volume and osmotic stress responses associated with CPA loading strategies and cooling, and (3) giving a comprehensive listing of oocyte specific biophysical membrane characteristics and commonly used permeation model equations. It is shown how transport models can be used to simulate the behavior of oocytes during cryopreservation processing steps, i.e., during loading of cryoprotective agents (CPAs), cooling with freezing as well as vitrification, warming and CPA unloading. More specifically, using defined cellular and membrane characteristics, the responses of oocytes during CPA (un)loading were simulated in terms of temperature- and CPA type-and-concentration-dependent changes in cell volume and intracellular solute concentration. In addition, in order to determine the optimal cooling rate for slow programmable cooling cryopreservation, the freezing-induced cell volume response was simulated at various cooling rates to estimate rates with tolerable limits. For vitrification, special emphasis was on prediction of the timing of reaching osmotic tolerance limits during CPA exposure, and the need to use step-wise CPA addition/removal protocols. In conclusion, we present simulations and schematic illustrations that explain the timing of events during slow cooling cryopreservation as well as vitrification, important for rationally designing protocols taking into account how different CPA types, concentrations and temperatures affect the oocyte.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anireprosci.2024.107536 | DOI Listing |
Front Immunol
December 2024
Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China.
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3CD4 regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B).
View Article and Find Full Text PDFFront Oncol
December 2024
Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Background: We previously demonstrated that APR-246 (eprenetapopt) could be an efficient treatment option against neuroblastoma (NB), the most common pediatric extracranial solid tumor. APR-246's mechanism of action is not completely understood and can differ between cell types. Here we investigate the involvement of well-known oncogenic pathways in NB's response to APR-246.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.
Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh.
Bhasan Char has undergone noteworthy transformations in its geographical characteristics since its emergence in 2003. Driven by sediment transported by the Ganges-Brahmaputra-Meghna river system, the island has gradually transitioned from a stretched-out configuration to a more rounded shape primarily due to continuous accretion, while erosion has been minimal since 2012. Currently, the island is being prepared to accommodate over 1 million Forcefully Displaced Myanmar Nationals (FDMN) refugees.
View Article and Find Full Text PDFBackground: Venous congestion (VC) sets in weeks before visible clinical decompensation, progressively increasing cardiac strain and leading to acute heart failure (HF) decompensation. Currently, the field lacks a universally acknowledged gold standard and early detection methods for VC.
Methods: Using data from the GEO database, we identified VC's impact on HF through key genes using Limma and STRING databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!