Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Investigating the complex interactions among physicochemical variables that influence the adsorptive removal of pollutants is a challenge for conventional one-variable-at-a-time (OVAT) batch methods. The adoption of machine learning-based chemometric prediction models is expected to be more accurate than the conventional method. This study proposed a novel modeling framework for predicting and optimizing the adsorptive removal of N-Nitrosodiphenylamine (NDPhA). Initially, models were trained by using OVAT data, with their hyperparameters subsequently fine-tuned through Bayesian optimization. In the second phase, the particle swarm optimization (PSO) technique was adopted to identify optimal parameters, specifically time, concentration, temperature, pH, and dose, to ensure the highest removal. The adopted analytical method enhances both prediction accuracy and removal efficiency. Utilizing OVAT data for NDPhA removal, the XGBoost regressor significantly outperformed other models. With a correlation coefficient of 0.9667 in the testing dataset, the XGBoost model exhibited its accuracy, emphasized by its low mean squared errors of 28.45 and mean absolute errors of 0.0982. Feature importance analysis consistently identified time and concentration as the most critical factors across all models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!