Peroxyacetic acid (PAA) is widely used as an antimicrobial in poultry processing. Recent salmonellosis outbreaks caused by Salmonella Infantis (SI) from chicken products and Salmonella Reading (SR) from turkey products have raised concerns about their enhanced resistance (compared to Salmonella Typhimurium [ST]) to commonly used antimicrobial interventions such as PAA. The objective of this research was to evaluate the efficacy of PAA against Salmonella serotypes (Typhimurium, Infantis and Reading), effect on product color and decomposition of PAA at different pH levels. Fresh chicken wings (0.45 kg) were inoculated with a cocktail (ca. 6 log CFU/mL) of nalidixic acid resistant ST, rifampicin resistant SI and kanamycin resistant SR. Inoculated chicken wings were immersed in PAA solutions (100 or 500 ppm; adjusted to either pH 8.5 or unadjusted natural pH) for either 10 s or 60 min to replicate treatments for chicken parts or whole carcasses, respectively. Treated chicken wings were rinsed in buffered peptone water (100 mL) containing sodium thiosulfate (0.1 %), serially diluted in peptone water supplemented with 200 ppm of nalidixic acid, rifampicin or kanamycin for enumeration of ST, SI, and SR respectively, and plated on APC Petrifilm. Immersion of chicken wings in 500 ppm PAA for 60 min resulted in greater microbial reductions (P ≤ 0.05) of ST, SI, SR of ca. Two log CFU/mL each, compared to 10 s treatment. Regardless of concentration and pH of PAA, increased exposure time (60 min vs. 10 s) resulted in greater reductions (P ≤ 0.05) of ST, SI, SR. ST was slightly more resistant to PAA solutions than S. Infantis and S. Reading (P ≤ 0.05) for all experimental conditions (PAA conc, pH, and exposure times). Faster decomposition of PAA (100 and 500 ppm) was observed at pH 8.5 compared to unadjusted, natural pH (P ≤ 0.05). Product color (lightness, L*) was not affected regardless of the PAA concentration, exposure time or the pH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246038 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.103935 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!