The perineum is a layered soft tissue structure with mechanical properties that maintain the integrity of the pelvic floor. During childbirth, the perineum undergoes significant deformation that often results in tears of various degrees of severity. To better understand the mechanisms underlying perineal tears, it is crucial to consider the mechanical properties of the different tissues that make up the perineum. Unfortunately, there is a lack of data on the mechanical properties of the perineum in the literature. The objective of this study is to partly fill these gaps. Hence sow perineums were dissected and the five perineal tissues involved in tears were characterized by uniaxial tension tests: Skin, Vagina, External Anal Sphincter, Internal Anal Sphincter and Anal Mucosa. From our knowledge, this study is the first to investigate all these tissues and to design a testing protocol to characterize their material properties. Six material models were used to fit the experimental data and the correlation between experimental and predicted data was evaluated for comparison. As a result, even if the tissues are of different nature, the best correlation was obtained with the Yeoh and Martins material models for all tissues. Moreover, these preliminary results show the difference in stiffness between the tissues which indicates that they might have different roles in the structure. These obtained results will serve as a basis to design an improved experimental protocol for a more robust structural model of the porcine perineum that can be used for the human perineum to predict perineal tears.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2024.112175DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
perineal tissues
8
tissues perineum
8
perineal tears
8
anal sphincter
8
material models
8
tissues
7
perineum
6
biomechanical modelling
4
modelling behaviour
4

Similar Publications

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

Injectable Polyhydroxyalkanoate-Nano-Clay Microcarriers Loaded with r-BMSCs Enhance the Repair of Cranial Defects in Rats.

Int J Nanomedicine

December 2024

Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

Purpose: Successful regeneration of cranial defects necessitates the use of porous bone fillers to facilitate cell proliferation and nutrient diffusion. Open porous microspheres, characterized by their high specific surface area and osteo-inductive properties, offer an optimal microenvironment for cell ingrowth and efficient ossification, potentially accelerating bone regeneration.

Materials And Methods: An in vitro investigation was conducted to assess the physicochemical properties, porosity, and biocompatibility of PHA-nano-clay open porous microspheres.

View Article and Find Full Text PDF

Molecularly Designed and Nanoconfined Polymer Electronic Materials for Skin-like Electronics.

ACS Cent Sci

December 2024

Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.

Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties.

View Article and Find Full Text PDF

Background: The aim of this study was to compare the mechanical properties of the polymer brackets with metal and ceramic brackets and verify if the polymer brackets could be used clinically.

Materials And Methods: A thorough search was conducted in four electronic databases, including Scopus, PubMed, Cochrane, Ovid, and Lilacs, with article selection based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis standards. A computerized search of the database was done from January 1990 to June 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!