Effects of selegiline on neuronal autophagy involving α-synuclein secretion.

Biochem Biophys Res Commun

Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.

Published: September 2024

Cell-to-cell transmission of α-synuclein (α-syn) pathology underlies the spread of neurodegeneration in Parkinson's disease. α-Syn secretion is an important factor in the transmission of α-syn pathology. However, it is unclear how α-syn secretion is therapeutically modulated. Here, we investigated effects of monoamine oxidase (MAO)-B inhibitor selegiline on α-syn secretion. Treatment with selegiline promoted α-syn secretion in mouse primary cortical neuron cultures, and this increase was kept under glial cell-eliminated condition by Ara-C. Selegiline-induced α-syn secretion was blocked by cytosolic Ca chelator BAPTA-AM in primary neurons. Selegiline-induced α-syn secretion was retained in MAOA siRNA knockdown, whereas it was abrogated by ATG5 knockdown in SH-SY5Y cells. Selegiline increased LC3-II generation with a reduction in intracellular p62/SQSTM1 levels in primary neurons. The increase in LC3-II generation was blocked by co-treatment with BAPTA-AM in primary neurons. Additionally, fractionation experiments showed that selegiline-induced α-syn secretion occurred in non-extracellular vesicle fractions of primary neurons and SH-SY5Y cells. Collectively, these findings show that selegiline promotes neuronal autophagy involving secretion of non-exosomal α-syn via a change of cytosolic Ca levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150267DOI Listing

Publication Analysis

Top Keywords

α-syn secretion
28
primary neurons
16
selegiline-induced α-syn
12
α-syn
10
secretion
9
neuronal autophagy
8
autophagy involving
8
α-syn pathology
8
bapta-am primary
8
sh-sy5y cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!