A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial transfer of α-synuclein mediates carbon disulfide-induced mitochondrial dysfunction and neurotoxicity. | LitMetric

Mitochondrial transfer of α-synuclein mediates carbon disulfide-induced mitochondrial dysfunction and neurotoxicity.

Ecotoxicol Environ Saf

Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:

Published: August 2024

Exposure to carbon disulfide (CS) is a recognized risk factor in the pathogenesis of Parkinson's disease, yet the underlying mechanisms of deleterious effects on mitochondrial integrity have remained elusive. Here, through establishing CS exposure models in rat and SH-SY5Y cells, we demonstrated that highly expressed α-synuclein (α-Syn) is transferred to mitochondria via membrane proteins such as Tom20 and leads to mitochondrial dysfunction and mitochondrial oxidative stress, which ultimately causes neuronal injury. We first found significant mitochondrial damage and oxidative stress in CS-exposed rat midbrain and SH-SY5Y cells and showed that mitochondrial oxidative stress was the main factor of mitochondrial damage by Mitoquinone intervention. Further experiments revealed that CS exposure led to the accumulation of α-Syn in mitochondria and that α-Syn co-immunoprecipitated with mitochondrial membrane proteins. Finally, the use of an α-Syn inhibitor (ELN484228) and small interfering RNA (siRNA) effectively mitigated the accumulation of α-Syn in neurons, as well as the inhibition of mitochondrial membrane potential, caused by CS exposure. In conclusion, our study identifies the translocation of α-Syn to mitochondria and the impairment of mitochondrial function, which has important implications for the broader understanding and treatment of neurodegenerative diseases associated with environmental toxins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116613DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
mitochondrial
11
mitochondrial dysfunction
8
sh-sy5y cells
8
membrane proteins
8
mitochondrial oxidative
8
mitochondrial damage
8
accumulation α-syn
8
α-syn mitochondria
8
mitochondrial membrane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!