i-Motifs (iMs) are non-canonical, four-stranded secondary structures formed by stacking of hemi-protonated CH+·C base pairs in cytosine-rich DNA sequences, predominantly at pH < 7. The presence of iM structures in cells was a matter of debate until the recent development of iM-specific antibody, iMab, which was instrumental for several studies that suggested the existence of iMs in live cells and their putative biological roles. We assessed the interaction of iMab with cytosine-rich oligonucleotides by biolayer interferometry (BLI), pull-down assay and bulk-FRET experiments. Our results suggest that binding of iMab to DNA oligonucleotides is governed by the presence of runs of at least two consecutive cytosines and is generally increased in acidic conditions, irrespectively of the capacity of the sequence to adopt, or not, an iM structure. Moreover, the results of the bulk-FRET assay indicate that interaction with iMab results in unfolding of iM structures even in acidic conditions, similarly to what has been observed with hnRNP K, well-studied single-stranded DNA binding protein. Taken together, our results strongly suggest that iMab actually binds to blocks of 2-3 cytosines in single-stranded DNA, and call for more careful interpretation of results obtained with this antibody.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317162 | PMC |
http://dx.doi.org/10.1093/nar/gkae531 | DOI Listing |
Transl Cancer Res
November 2024
Department of Public Health, International College, Krirk University, Bangkok, Thailand.
Background: The response of gastric cancer (GC) patients to first-line programmed cell death 1 (PD-1) blockade and S-1 plus oxaliplatin (SOX) chemotherapy varies considerably, and the underlying mechanisms driving this variability remain elusive. Exosomal microRNAs (miRNAs or miRs) have emerged as potential biomarkers for efficacy prediction due to their roles in GC biology and stable expression in serum. In this study, we aimed to identify biomarkers to predict patients' response to anti-PD-1 therapy and further elucidate the potential mechanisms by which these exosomal miRNAs modulate the immune response in GC.
View Article and Find Full Text PDFJ Gastrointest Cancer
December 2024
Duke Cancer Institute, Duke University, Durham, NC, USA.
Purpose: MET amplification (amp) is a driver of acquired resistance to epidermal growth factor receptor (EGFR) antibodies in patients with RAS wild-type (WT) metastatic colorectal cancer (mCRC). Savolitinib is an oral small molecule tyrosine kinase inhibitor that has demonstrated anti-tumor activity in MET-driven advanced solid tumors. We report the results of a phase 2 study of savolitinib in patients with mCRC with MET amp detected by circulating cell free (cf)DNA.
View Article and Find Full Text PDFFood Chem
November 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China. Electronic address:
Edible oil safety impacts food safety and consumer health. The typical pollutants-aflatoxin B (AFB) and benzo(α)pyrene (BaP), and kitchen waste oil-are significant hazards in edible oil consumption. Herein, we developed a dual-readout lateral flow immunoassay (tdLFIA) for the multi-quantitative detection of AFB, BaP and capsaicin (CAP).
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA.
Therapeutic strategies targeting the DNA damage response, such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi), have revolutionized cancer treatment in tumors deficient in homologous recombination (HR). However, overcoming innate and acquired resistance to PARPi remains a significant challenge. Here, we employ a genome-wide CRISPR knockout screen and discover that the depletion of ubiquitin-activating enzyme E1 (UBA1) enhances sensitivity to PARPi in HR-proficient ovarian cancer cells.
View Article and Find Full Text PDFFront Oncol
October 2024
New Experimental Therapeutics (NEXT) Oncology, San Antonio, TX, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!