Phylogenetics and biogeography of the olive family (Oleaceae).

Ann Bot

CNRS, Université Paul Sabatier, IRD, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France.

Published: October 2024

Background And Aims: Progress in the systematic studies of the olive family (Oleaceae) during the last two decades provides the opportunity to update its backbone phylogeny and to investigate its historical biogeography. We also aimed to understand the factors underlying the disjunct distribution pattern between East Asia and both West Asia and Europe that is found more commonly in this family than in any other woody plant family.

Methods: Using a sampling of 298 species out of ~750, the largest in a phylogenetic study of Oleaceae thus far, with a set of 36 plastid and nuclear markers, we reconstructed and dated a new phylogenetic tree based on maximum likelihood and Bayesian methods and checked for any reticulation events. We also assessed the relative support of four competing hypotheses [Qinghai-Tibet Plateau uplift (QTP-only hypothesis); climatic fluctuations (climate-only hypothesis); combined effects of QTP uplift and climate (QTP-climate hypothesis); and no effects (null hypothesis)] in explaining these disjunct distributions.

Key Results: We recovered all tribes and subtribes within Oleaceae as monophyletic, but uncertainty in the position of tribe Forsythieae remains. Based on this dataset, no reticulation event was detected. Our biogeographical analyses support the QTP-climate hypothesis as the likely main explanation for the East-West Eurasian disjunctions in Oleaceae. Our results also show an earlier origin of Oleaceae at ~86 Mya and the role of Tropical Asia as a main source of species dispersals.

Conclusion: Our new family-wide and extensive phylogenetic tree highlights both the stable relationships within Oleaceae, including the polyphyly of the genus Chionanthus, and the need for further systematic studies within the largest and most undersampled genera of the family (Chionanthus and Jasminum). Increased sampling will also help to fine-tune biogeographical analyses across spatial scales and geological times.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523611PMC
http://dx.doi.org/10.1093/aob/mcae100DOI Listing

Publication Analysis

Top Keywords

olive family
8
family oleaceae
8
systematic studies
8
phylogenetic tree
8
qtp-climate hypothesis
8
biogeographical analyses
8
oleaceae
7
phylogenetics biogeography
4
biogeography olive
4
family
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!