Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is a late onset neurodegenerative disorder. Its genetic basis has recently been identified in the gene encoding a subunit of the Replication Factor C (RFC1). We present the case of a 62-year-old woman who experienced a history of a biphasic presentation of imbalance and gait disorders, with rapid onset of symptoms followed by slow and progressive neurological deterioration. The diagnostic process was challenging, and numerous tests were conducted to rule out acquired and genetic causes of ataxia, leading to a diagnosis of late-onset idiopathic cerebellar ataxia. Subsequently, vestibular function tests identified severe bilateral vestibulopathy. This led to considering CANVAS among the diagnoses, which was ultimately confirmed through genetic testing (biallelic expansion of the pentanucleotide AAGGG in the RFC1 gene). This case highlights the importance of this new described genetic disease and its subacute presentation variant, emphasizing the relevance of objective vestibular function tests in idiopathic ataxias to achieve proper diagnosis and eventual genetic counseling for offspring.
Download full-text PDF |
Source |
---|
Cureus
December 2024
Department of Neurology, St. Joseph Medical Center, Stockton, USA.
Cerebellar mutism syndrome (also known as posterior fossa syndrome) has been mostly seen in pediatric patients after surgery for neoplastic disease and is characterized by mutism, with variable symptoms such as emotional lability, ataxia, apraxia, and hypotonia. While the mechanism is not precisely defined, it is thought to result from disconnections between the cortical and cerebellar brain networks. Presentation in adult patients is rare, with various etiologies including posterior fossa ischemia, hemorrhage, and tumors being most reported.
View Article and Find Full Text PDFIntroduction: COQ4 mutation often leads to a fatal multi-system disease in infants. Recently, it was reported that the biallelic COQ4 variants may be a potential cause of hereditary spastic paraplegia (HSP). This study aims to describe the clinical features and genotype of the COQ4 associated hereditary spastic paraplegia (HSP).
View Article and Find Full Text PDFJ Neuroophthalmol
January 2025
Departments of Ophthalmology and Visual Sciences (HMM, AH, EM), and Radiology (DMM), University of Toronto, Toronto, Canada; Department of Ophthalmology (LD), McMaster University, Hamilton, Canada; Departments of Ophthalmology and Visual Sciences, and Neurology (JDT), University of Michigan, Ann Arbor, Michigan; Department of Neurology (JDT), University of Michigan, Ann Arbor, Michigan; Division of Neurology, Department of Medicine (EM), University of Toronto, Toronto, Canada.
Background: Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a rare and poorly understood inflammatory disorder of the central nervous system centered on the pons. It has a characteristic imaging appearance with enhancing and T2-hyperintense punctate and curvilinear lesions in the pons. The lesions lack restricted diffusion and have relatively little perilesional edema.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA.
The cerebellum, a key target of ethanol's toxic effects, is associated with ataxia following alcohol consumption. However, the impact of ethanol on Purkinje cell (PC) mitochondria remains unclear. To investigate how ethanol administration affects mitochondrial dynamics in cerebellar Purkinje cells, we employed a transgenic mouse model expressing mitochondria-targeted yellow fluorescent protein in Purkinje cells (PC-mito-eYFP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!