AI Article Synopsis

Article Abstract

The purpose of this study was to systematise scientific publications on the combined effect of gamma radiation and heavy metals on living organisms. For this purpose, the method of analysis was applied, by means of which scientific papers in PubMed, Google Scholar, and other related databases were analysed for compliance with the inclusion criteria, where the objects of research were toxic effects of radiation and heavy metals on cells and adaptation processes. The results revealed that the study of the problem was carried out on organisms such as microalgae, fungi, weed and agricultural plants, fish, laboratory rats, and human cell cultures. In most studies, an antagonistic effect between low doses of gamma radiation and heavy metal salts was reported, which was manifested by a reduction in the cytotoxicity of isolated exposure to each agent separately. However, there are studies showing additive effects, especially in heavy metals. At the molecular level, heavy metal accumulation in combination with low doses of radiation (typically defined as less than 0.1 Gy or sievert) induces the expression of metallothionein proteins, which can bind free radicals. At the metabolic level, this is manifested by a decrease in lipid peroxidation products, activation of antioxidant enzymes, and a decrease in apoptosis. The study proved both a direct relationship between zinc and cadmium accumulation in cells and inhibition of caspases and an indirect one, by maintaining mitochondrial membrane integrity through metallothionein.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-024-04272-8DOI Listing

Publication Analysis

Top Keywords

radiation heavy
16
heavy metals
16
gamma radiation
12
combined gamma
8
metals living
8
living organisms
8
organisms purpose
8
low doses
8
heavy metal
8
heavy
6

Similar Publications

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

Solar-based technologies for removing potentially toxic metals from water sources: a review.

Environ Sci Pollut Res Int

January 2025

Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil.

Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals.

View Article and Find Full Text PDF

The objective of this study was to analyze the risk factors for synchronous bone metastases in patients with oral tongue squamous cell carcinomas (OTSCC). OTSCC patients were extracted from the Surveillance, Epidemiology and End Results database between 2014 and 2017. We examined the association between risk factors and synchronous bone metastases using Chi-squared tests.

View Article and Find Full Text PDF

Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.

View Article and Find Full Text PDF

Inverse dose protraction effects of high-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!