A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exceptional Anhydrous Proton Conduction in Covalent Organic Frameworks. | LitMetric

Exceptional Anhydrous Proton Conduction in Covalent Organic Frameworks.

J Am Chem Soc

Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

Published: July 2024

Covalent organic frameworks (COFs) offer an irreplaceable platform for mass transport, as they provide aligned one-dimensional channels as pathways. Especially, proton conduction is of great scientific interest and technological importance. However, unlike proton conduction under humidity, anhydrous proton conduction remains a challenge, as it requires robust materials and proceeds under harsh conditions. Here, we report exceptional anhydrous proton conduction in stable crystalline porous COFs by integrating neat phosphoric acid into the channels to form extended hydrogen-bonding networks. The phosphoric acid networks in the pores are stabilized by hierarchical multipoint and multichain hydrogen-bonding interactions with the 3D channel walls. We synthesized five hexagonal COFs that possess different pore sizes, which are gradually tuned from micropores to mesopores. Remarkably, mesoporous COFs with a high pore volume exhibit an exceptional anhydrous proton conductivity of 0.31 S cm, which marks the highest conductivity among all examples reported for COFs. We observed that the proton conductivity is dependent on the pore volume, pore size, and content of phosphoric acid. Increasing the pore volume improves the proton conductivity in an exponential fashion. Remarkably, changing the pore volume from 0.41 to 1.60 cm g increases the proton conductivity by 1150-fold. Interestingly, as the pore size increases, the activation energy barrier of proton conduction decreases in linear mode. The mesopores enable fast proton hopping across the channels, while the micropores follow sluggish vehicle conduction. Experiments on tuning phosphoric acid loading contents revealed that a well-developed hydrogen-bonding phosphoric acid network in the pores is critical for proton conduction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c06049DOI Listing

Publication Analysis

Top Keywords

proton conduction
28
phosphoric acid
20
anhydrous proton
16
pore volume
16
proton conductivity
16
exceptional anhydrous
12
proton
12
conduction
8
covalent organic
8
organic frameworks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!