Cell-cell interactions, which allow cells to communicate with each other through molecules in their microenvironment, are critical for the growth, health, and functions of cells. Previous studies show that drug-resistant cells can interact with drug-sensitive cells to elevate their drug resistance level, which is partially responsible for cancer recurrence. Studying protein targets and pathways involved in cell-cell communication provides essential information for fundamental cell biology studies and therapeutics of human diseases. In the current studies, we performed direct coculture and indirect coculture of drug-resistant and drug-sensitive cell lines, aiming to investigate intracellular proteins responsible for cell communication. Comparative studies were carried out using monoculture cells. Shotgun bottom-up proteomics results indicate that the P53 signaling pathway has a strong association with drug resistance mechanisms, and multiple TP53-related proteins were upregulated in both direct and indirect coculture systems. In addition, cell-cell communication pathways, including the phagosome and the HIF-signaling pathway, contribute to both direct and indirect coculture systems. Consequently, AK3 and H3-3A proteins were identified as potential targets for cell-cell interactions that are relevant to drug resistance mechanisms. We propose that the P53 signaling pathway, in which mitochondrial proteins play an important role, is responsible for inducing drug resistance through communication between drug-resistant and drug-sensitive cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425778 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.4c00338 | DOI Listing |
Mol Cancer
January 2025
Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.
Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.
Arch Virol
January 2025
Department Experimental and Clinical Medicine, University of Florence, Florence, Italy.
The I38T substitution in the influenza virus polymerase-acidic (PA) subunit is a resistance marker of concern for treatment with the antiviral baloxavir marboxil (BXM). Thus, monitoring PA/I38T mutations is of clinical importance. Here, we developed three rapid and sensitive assays for the detection and monitoring of the PA/I38T mutation.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria.
View Article and Find Full Text PDFKawasaki disease (KD) is a leading cause of acquired heart disease in children, often resulting in coronary artery complications such as dilation, aneurysms, and stenosis. While intravenous immunoglobulin (IVIG) is effective in reducing immunologic inflammation, 10-15% of patients do not respond to initial therapy, and some show resistance even after two consecutive treatments. Predicting which patients will not respond to these two IVIG treatments is crucial for guiding treatment strategies and improving outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB 21561, Alexandria, Egypt.
Obesity is a rapidly growing epidemic that continues to be a major severe health problem due to its association with various adverse health consequences. Since 1975, the WHO estimates that the prevalence of obesity has tripled globally. Chrysin is a flavone that is mostly found in the Passiflore species of plants and in propolis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!