The electroencephalogram-based motor imagery (MI-EEG) classification task is significant for brain-computer interface (BCI). EEG signals need a lot of channels to be acquired, which makes it difficult to use in real-world applications. Choosing the optimal channel subset without severely impacting the classification performance is a problem in the field of BCI. To overwhelm this problem, a band power feature part-based convolutional neural network with African vulture optimization fostered channel selection for EEG classification (PCNNC-AVOACS-EEG) is proposed in this article. Initially, the input EEG signals are taken from BCI competition IV, dataset 1. Then the input EEG signals are pre-processed by contrast-limited adaptive histogram equalization filtering. These pre-processed EEG signals are extracted by hexadecimal local adaptive binary pattern (HLABP) method. This HLABP method extracts the features of alpha and beta bands from the EEG segments. Each EEG channel's band power data are utilized as features for a PCNNC to exactly classify the EEG into 3 classes: two MI states and idle state. The AVOA is applied within the band power feature PCNNC for channel selection, wherein channel selection aids to enhance the categorization accuracy on test set that is a vital indicator for real-time BCI applications. The proposed method is activated in python. From the experiment, the proposed technique attains 17.91%, 20.46% and 18.146% higher accuracy; 14.105%, 15.295% and 5.291% higher area under the curve and 70%, 60% and 65.714% lower computation time compared with the existing approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2024.2356633DOI Listing

Publication Analysis

Top Keywords

band power
16
channel selection
16
eeg signals
16
power feature
12
eeg
9
feature part-based
8
part-based convolutional
8
convolutional neural
8
neural network
8
network african
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!