We discuss the two-dimensional motion of a Brownian particle that is confined to a harmonic trap and driven by a shear flow. The surrounding medium induces memory effects modeled by a linear, typically nonreciprocal coupling of the particle coordinates to an auxiliary (hidden) variable. The system's behavior resulting from the microscopic Langevin equations for the three variables is analyzed by means of exact moment equations derived from the Fokker-Planck representation, and numerical Brownian dynamics simulations. Increasing the shear rate beyond a critical value we observe, for suitable coupling scenarios with nonreciprocal elements, a transition from a stationary to a nonstationary state, corresponding to an escape from the trap. We analyze this behavior, analytically and numerically, in terms of the associated moments of the probability distribution, and from the perspective of nonequilibrium thermodynamics. Intriguingly, the entropy production rate remains finite when crossing the stability threshold.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.109.054129DOI Listing

Publication Analysis

Top Keywords

entropy production
8
nonequilibrium dynamics
4
dynamics entropy
4
production trapped
4
trapped colloidal
4
colloidal particle
4
particle complex
4
complex nonreciprocal
4
nonreciprocal medium
4
medium discuss
4

Similar Publications

The context of rapid global environmental change underscores the pressing necessity to investigate the environmental factors and high-risk areas that contribute to the occurrence of brucellosis. In this study, a maximum entropy (MaxEnt) model was employed to analyze the factors influencing brucellosis in the Aksu Prefecture from 2014 to 2023. A distributed lag nonlinear model (DLNM) was employed to investigate the lagged effect of meteorological factors on the occurrence of brucellosis.

View Article and Find Full Text PDF

This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.

View Article and Find Full Text PDF

The types and quantities of microorganisms in activated sludge are directly related to the stability and efficiency of sewage treatment systems. This paper proposes a sludge microorganism detection method based on microscopic phase contrast image optimisation and deep learning. Firstly, a dataset containing eight types of microorganisms is constructed, and an augmentation strategy based on single and multisamples processing is designed to address the issues of sample deficiency and uneven distribution.

View Article and Find Full Text PDF

A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!