Cilia are hairlike microactuators whose cyclic motion is specialized to propel extracellular fluids at low Reynolds numbers. Clusters of these organelles can form synchronized beating patterns, called metachronal waves, which presumably arise from hydrodynamic interactions. We model hydrodynamically interacting cilia by microspheres elastically bound to circular orbits, whose inclinations with respect to a no-slip wall model the ciliary power and recovery stroke, resulting in an anisotropy of the viscous flow. We derive a coupled phase-oscillator description by reducing the microsphere dynamics to the slow timescale of synchronization and determine analytical metachronal wave solutions and their stability in a periodic chain setting. In this framework, a simple intuition for the hydrodynamic coupling between phase oscillators is established by relating the geometry of flow near the surface of a cell or tissue to the directionality of the hydrodynamic coupling functions. This intuition naturally explains the properties of the linear stability of metachronal waves. The flow near the surface stabilizes metachronal waves with long wavelengths propagating in the direction of the power stroke and, moreover, metachronal waves with short wavelengths propagating perpendicularly to the power stroke. Performing simulations of phase-oscillator chains with periodic boundary conditions, we indeed find that both wave types emerge with a variety of linearly stable wave numbers. In open chains of phase oscillators, the dynamics of metachronal waves is fundamentally different. Here the elasticity of the model cilia controls the wave direction and selects a particular wave number: At large elasticity, waves traveling in the direction of the power stroke are stable, whereas at smaller elasticity waves in the opposite direction are stable. For intermediate elasticity both wave directions coexist. In this regime, waves propagating towards both ends of the chain form, but only one wave direction prevails, depending on the elasticity and initial conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.054407 | DOI Listing |
Sci Rep
October 2024
Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
Free-swimming polychaetes are common in marine habitats and exhibit a unique form of swimming whereby a metachronal wave occurs simultaneously with a bending body wave. This body wave is unusual among swimming animals because it travels in the same direction as the animal's swimming direction. However, we currently lack a mechanistic understanding of this unusual form of locomotion.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
The rheological properties of the extracellular fluid in the female reproductive tract vary spatiotemporally, however, the effect on the behaviour of epithelial cells that line the tract is unexplored. Here, we reveal that epithelial cells respond to the elevated viscosity of culture media by modulating their development and functionality to enhance cilia formation and coordination. Specifically, ciliation increases by 4-fold and cilia beating frequency decreases by 30% when cells are cultured at 100 mPa·s.
View Article and Find Full Text PDFPhys Rev E
July 2024
Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France.
Large groups of active cilia collectively beat in a fluid medium as metachronal waves, essential for some microorganisms motility and for flow generation in mucociliary clearance. Several models can predict the emergence of metachronal waves, but what controls the properties of metachronal waves is still unclear. Here, we numerically investigate the respective impacts of active beating and viscous dissipation on the properties of metachronal waves in a collection of oscillators, using a simple model for cilia in the presence of noise on regular lattices in one and two dimensions.
View Article and Find Full Text PDFPLoS One
July 2024
Department of Physics, Gakushuin University, Toshima-ku, Tokyo, Japan.
Eukaryotic flagella collectively form metachronal waves that facilitate the ability to cause flow or swim. Among such flagellated and planktonic swimmers, large volvocine genera such as Eudorina, Pleodorina and Volvox form bundles of small male gametes (sperm) called "sperm packets" for sexual reproduction. Although these sperm packets reportedly have flagella and the ability to swim, previous studies on volvocine motility have focused on asexual forms and the swimming characteristics of sperm packets remain unknown.
View Article and Find Full Text PDFPhys Rev E
May 2024
Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany.
Cilia are hairlike microactuators whose cyclic motion is specialized to propel extracellular fluids at low Reynolds numbers. Clusters of these organelles can form synchronized beating patterns, called metachronal waves, which presumably arise from hydrodynamic interactions. We model hydrodynamically interacting cilia by microspheres elastically bound to circular orbits, whose inclinations with respect to a no-slip wall model the ciliary power and recovery stroke, resulting in an anisotropy of the viscous flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!