We present numerical simulations on pairwise interactions between particles trapped at an isotropic-nematic liquid crystal (Iso-N) interface. The particles are subject to elastocapillary interactions arising from interfacial deformations and elastic distortions of the nematic phase. We use a recent model based on a phase-field approach [see Qiu et al., Phys. Rev. E 103, 022706 (2021)2470-004510.1103/PhysRevE.103.022706] to take into account the coupling between elastic and capillary phenomena. The pair potential is computed in a two-dimensional geometry for a range of particle separations and two anchoring configurations. The first configuration leads to the presence of an anchoring conflict at the three-phase contact line, whereas such a conflict does not exist for the second one. In the first case, the results show that significant interfacial deformations and downward particle displacements occur, resulting in sizable attractive capillary interactions able to overcome repulsive elastic forces at intermediate separations. The pair potential exhibits an equilibrium distance since elastic repulsions prevail at short range and prevent the clustering of particles. However, in the absence of any anchoring conflict, the interfacial deformations are very small and the capillary forces have a negligible contribution to the pair potential, which is fully repulsive and overwhelmed by elastic forces. These results suggest that the self-assembly properties of particles floating at Iso-N interfaces might be controlled by tuning anchoring conflicts.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.109.054603DOI Listing

Publication Analysis

Top Keywords

interfacial deformations
12
pair potential
12
particles trapped
8
trapped isotropic-nematic
8
isotropic-nematic liquid
8
liquid crystal
8
anchoring conflict
8
elastic forces
8
particles
5
elastic
5

Similar Publications

Suppressing Friction-Induced Stick-Slip Vibration and Noise of Zinc-Coated Steel through Temper Rolling.

Langmuir

January 2025

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

The stick-slip phenomenon as a prevalent friction instability poses significant challenges to industry, including frictional vibration, reduced precision, and noise generation. The interfacial interactions between asperities on the surface of materials are critical in influencing stick-slip behavior. This study focused on modifying the asperities on the surface of zinc-coated steel through temper rolling as a new approach to suppress friction-induced stick-slip vibration and noise.

View Article and Find Full Text PDF

Unlocking Sulfide Solid-State Battery Longevity by the Paradigm of Dual-Functional Plastic Crystal.

ACS Nano

January 2025

Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China.

The utilization of sulfide-based solid electrolytes represents an attractive avenue for high safety and energy density all-solid-state batteries. However, the potential has been impeded by electrochemical and mechanical stability at the interface of oxide cathodes. Plastic crystals, a class of organic materials exhibiting remarkable elasticity, chemical stability, and ionic conductivity, have previously been underutilized due to their susceptibility to dissolution in liquid electrolytes.

View Article and Find Full Text PDF

Investigation of Shear Behavior in High-Strength Bolt Connectors for Steel-Concrete Composite Beams.

Materials (Basel)

December 2024

Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University, Chongqing 400045, China.

High-strength bolt connectors, known for their robust strength and ease of disassembly, are suitable not only for the construction of new steel-concrete composite beams but also for reinforcing existing composite or steel beams. Static push-out tests were performed on nine specimens to examine their shear behavior. The primary failure mode was observed at the steel-concrete interface, characterized by the tensile-shear failure of the bolt and localized crushing of the concrete beneath the bolt.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium metal batteries are promising for high energy density and safety, but issues like voids at the anode/electrolyte interface during lithium stripping can hurt stability.
  • Stack pressure and operating temperature can induce creep deformation in lithium metal, potentially improving interfacial issues caused by these voids, although understanding of these effects is still lacking.
  • A new coupled model (EDMP-VE) has been developed to study the influence of pressure and temperature on void evolution, showing that higher conditions can enhance void healing and stabilize interfaces by reducing void expansion and promoting filling.
View Article and Find Full Text PDF

Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!