Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371665 | PMC |
http://dx.doi.org/10.1093/jbmr/zjae088 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
Dysregulated mitophagy is essential for mitochondrial quality control within human cancers. However, identifying hub genes regulating mitophagy and developing mitophagy-based treatments to combat drug resistance remains challenging. Herein, BayeDEM (Bayesian-optimized Deep learning for identifying Essential genes of Mitophagy) was proposed for such a task.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China.
J Inflamm Res
December 2024
Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
Imbalances in gut microbiota and their metabolites have been implicated in osteoporotic disorders. Trimethylamine-n-oxide (TMAO), a metabolite of L-carnitine produced by gut microorganisms and flavin-containing monooxygenase-3, is known to accelerate tissue metabolism and remodeling; however, its role in bone loss remained unexplored. This study investigates the relationship between gut microbiota dysbiosis, TMAO production, and osteoporosis development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!