Mechanisms underlying neutrophils adhesion to triple-negative breast cancer cells via CD11b-ICAM1 in promoting breast cancer progression.

Cell Commun Signal

Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.

Published: June 2024

Background: Triple-negative breast cancer (TNBC) is recognized as the most aggressive and immunologically infiltrated subtype of breast cancer. A high circulating neutrophil-to-lymphocyte ratio (NLR) is strongly linked to a poor prognosis among patients with breast cancer, emphasizing the critical role of neutrophils. Although the involvement of neutrophils in tumor metastasis is well documented, their interactions with primary tumors and tumor cells are not yet fully understood.

Methods: Clinical data were analyzed to investigate the role of neutrophils in breast cancer. In vivo mouse model and in vitro co-culture system were used for mechanism researches. Blocking experiments were further performed to identify therapeutic agents against TNBC.

Results: TNBC cells secreted GM-CSF to sustain the survival of mature neutrophils and upregulated CD11b expression. Through CD11b, neutrophils specifically binded to ICAM1 on TNBC cells, facilitating adhesion. Transcriptomic sequencing combined with human and murine functional experiments revealed that neutrophils, through direct CD11b-ICAM1 interactions, activated the MAPK signaling pathway in TNBC cells, thereby enhancing tumor cell invasion and migration. Atorvastatin effectively inhibited ICAM1 expression in tumor cells, and tumor cells with ICAM1 knockout or treated with atorvastatin were unresponsive to neutrophil activation. The MAPK pathway and MMP9 expression were significantly inhibited in the tumor tissues of TNBC patients treated with atorvastatin.

Conclusions: Targeting CD11b-ICAM1 with atorvastatin represented a potential clinical approach to reduce the malignant characteristics of TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191284PMC
http://dx.doi.org/10.1186/s12964-024-01716-5DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
tumor cells
12
tnbc cells
12
triple-negative breast
8
role neutrophils
8
neutrophils
7
cells
7
breast
6
cancer
6
tnbc
6

Similar Publications

Objective: Mailed letters to women identified as being at high-risk for developing breast cancer were not having the desired effect for encouraging appointments with prevention-focused providers at a large Midwest healthcare system. A partnership with communication scholars sought to revise the letter to increase awareness, intentions, and appointments.

Methods: Guided by the Extended Parallel Process Model, survey responses were collected from letter recipients over the course of two years, both pre and post letter revision.

View Article and Find Full Text PDF

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

An approach to COVID‑19 and oncology: From impact, staging and management to vaccine outcomes in cancer patients: A systematic review and meta‑analysis.

Exp Ther Med

February 2025

Oncology Department, Princess Noorah Oncology Center, King Abdul Aziz Medical City, Ministry of National Guard-Health Affairs, King Abdullah International Medical Research Centre, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Makkah-Jeddah Highway Road, Jeddah 22384, Saudi Arabia.

The COVID-19 pandemic has had a global impact, with >771 million confirmed cases and 6 million deaths reported by October 2023. Cancer patients, due to their immunosuppressed status, face an increased infection risk and higher COVID-19 complications. The present study aimed to assess clinical outcomes in COVID-19-infected cancer patients, focusing on mortality rates and other aspects, providing valuable insight for better protection and outcomes.

View Article and Find Full Text PDF

Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!