A side-by-side comparison of different capacitation media in developing mouse sperm fertilizing ability.

Sci Rep

Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.

Published: June 2024

To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192932PMC
http://dx.doi.org/10.1038/s41598-024-65134-wDOI Listing

Publication Analysis

Top Keywords

mouse sperm
12
culture media
8
side-by-side comparison
4
capacitation
4
comparison capacitation
4
media
4
capacitation media
4
media developing
4
mouse
4
developing mouse
4

Similar Publications

Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.

View Article and Find Full Text PDF

Background And Objectives: Epididymal transit renders key competence to mammalian spermatozoa for fertilizing eggs. Generally, the two paralogs of glycogen synthase kinase 3, GSK3α and GSK3β, functionally overlap except in testis and sperm. We showed that GSK3α is essential for epididymal sperm maturation and fertilization.

View Article and Find Full Text PDF

Oligoasthenoteratozoospermia (OAT) is a common cause of infertility among males, and the majority of cases of idiopathic OAT are thought to be attributed to genetic defects. In this study, the role of the CEP78 protein in spermatogenesis was initially investigated using Cep78 knockout (Cep78) mice. Notably, the male Cep78 mice exhibited the OAT phenotype and sterility.

View Article and Find Full Text PDF

Permanent preservation of genetic resources may be indispensable for the future of humanity. This requires liquid nitrogen, as is the case for preserving animal sperm. However, this technique is expensive and poses a risk of irrecoverable sample loss on non-replenishment of liquid nitrogen in case of natural disasters.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The effect of hyperuricemia (HUA) on testicular spermatogenesis cannot be ignored. The classical Chinese medicine compound Shenling Baizhu San (SLBZS) can reduce uric acid and improve testicular spermatogenesis, while researchers have not well explored the related pathology and pharmacodynamic mechanism have.

Aims Of Study: To investigate whether the dysfunction of testicular spermatogenesis caused by HUA and the therapeutic effect of SLBZS are related to testicular cell ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!