Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Philadelphia chromosome-positive (Ph+) lymphoid blast crisis (BC), emanating from chronic myeloid leukemia (CML), is a fatal disease with limited treatment options. Asciminib (ABL001) is a novel selective allosteric inhibitor of the ABL kinase with high efficacy against TKI-resistant BCR::ABL1. In this study, we demonstrate significant suppression of an aggressive B-lymphoblastic disease and restoration of normal hematopoiesis in an inducible transgenic mouse model of p210-BCR::ABL1-positive CML-BC. Molecularly, asciminib treatment significantly reduced transcripts to background levels, demonstrating its ability to suppress BCR::ABL1-induced disease. Furthermore, asciminib treatment normalized the long-term repopulating hematopoietic stem cell (LT-HSC) population in the BM, suggesting the selective targeting of malignant LT-HSCs. This was supported by secondary transplantation experiments, resulting in absence of BC in a proportion of mice. Importantly, none of the secondary transplanted mice that received further asciminib treatment developed leukemia. Sanger sequencing of the myristoyl pocket region of both treatment-naïve and treated mice demonstrated a high mutational load. However, there was no indication of asciminib-specific mutations. These promising findings highlight the potential of asciminib as a drug that targets BC stem cells and as an alternative stand-alone or combinatorial therapy for first-line treatment of CML BC or Ph+ acute lymphoblastic leukemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286509 | PMC |
http://dx.doi.org/10.1038/s41375-024-02320-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!