Natural toxins (NTs) are poisonous secondary metabolites produced by living organisms developed to ward off predators. Especially low molecular weight NTs (MW<∼1 kDa), such as mycotoxins, phycotoxins, and plant toxins, are considered an important and growing food safety concern. Therefore, accurate risk assessment of food and feed for the presence of NTs is crucial. Currently, the analysis of NTs is predominantly performed with targeted high pressure liquid chromatography tandem mass spectrometry (HPLC-MS/MS) methods. Although these methods are highly sensitive and accurate, they are relatively expensive and time-consuming, while unknown or unexpected NTs will be missed. To overcome this, novel on-site screening methods and non-targeted HPLC high resolution mass spectrometry (HRMS) methods have been developed. On-site screening methods can give non-specialists the possibility for broad "scanning" of potential geographical regions of interest, while also providing sensitive and specific analysis at the point-of-need. Non-targeted chromatography-HRMS methods can detect unexpected as well as unknown NTs and their metabolites in a lab-based approach. The aim of this chapter is to provide an insight in the recent advances, challenges, and perspectives in the field of NTs analysis both from the on-site and the laboratory perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.afnr.2024.05.001 | DOI Listing |
J Ethnobiol Ethnomed
January 2025
Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, 332900, China.
Background: Laji-He is a traditional rice-based snack from the Beibu Gulf region in southern China. In the Beibu Gulf region, "Laji-He" (literally "garbage He") signifies the removal of toxins from the body, making it a truly "green" food. Laji-He holds essential cultural and medicinal value, incorporating various medicinal plants into its preparation.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
The present investigation evaluated the potential impacts of morin, a natural flavonoid, against cardiovascular disorders. Since inception until September 2024, PubMed, Scopus, and Web of Science have been searched extensively. The process involved eliminating duplicate entries and conducting a systematic review of the remaining studies post-full-text screening.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, 518100, China.
Bongkrekic acid (BA) toxin, produced by Burkholderia gladioli pathovar cocovenenans bacteria, has been implicated in foodborne illness outbreaks. BA poisoning is associated with rice noodle consumption; hence, this study investigated B. cocovenenans growth and BA production in wet rice noodles comprising varying starch ratios, starch types, rice nutrients, and saccharides.
View Article and Find Full Text PDFACS Nano
January 2025
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
Immunocompromised populations, including cancer patients, elderly individuals, and those with chronic diseases, are the primary targets of superbugs. Traditional vaccines are less effective due to insufficient or impaired immune cells. Inspired by the "vanguard" effect of neutrophils (NE) during natural infection, this project leverages the ability of NE to initiate the NETosis program to recruit monocytes and DC cells, designing vaccines that can rapidly recruit immune cells and enhance the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!