Bioinspired green synthesis of ZnO nanoparticles by marine-derived Streptomyces plicatus and its multifaceted biomedicinal properties.

Microb Pathog

Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India. Electronic address:

Published: August 2024

The present study explores the bioinspired green synthesis of zinc oxide nanoparticles (ZnONPs) using marine Streptomyces plicatus and its potent antibacterial, antibiofilm activity against dental caries forming Streptococcus mutans MTCC and S. mutans clinical isolate (CI), cytotoxicity against oral KB cancer cells, hemolysis against blood erythrocytes and artemia toxicity. The bioinspired ZnONPs showed a distinctive absorption peak at 375 nm in UV-Vis spectra, the FT-IR spectra divulged the active functional groups, and XRD confirmed the crystalline nature of the nanoparticles with an average grain size of 41.76 nm. SEM analysis evidenced hexagonal morphology, and EDX spectra affirmed the presence of zinc. The ZnONPs exerted higher antagonistic activity against S. mutans MTCC (Inhibitory zone: 19 mm; MIC: 75 μg/ml) than S. mutans CI (Inhibitory zone: 17 mm; MIC: 100 μg/ml). Results of biofilm inhibitory activity showed a concentration-dependent reduction with S. mutans MTCC (15 %-95 %) more sensitive than S. mutans CI (13 %-89 %). The 50 % biofilm inhibitory concentration (BIC) of ZnONPs against S. mutans MTCC was considerably lower (71.76 μg/ml) than S. mutans CI (78.13 μg/ml). Confocal Laser Scanning Microscopic visuals clearly implied that ZnONPs effectively distorted the biofilm architecture of both S. mutans MTCC and S. mutans CI. This was further bolstered by a remarkable rise in protein leakage (19 %-85 %; 15 %-77 %) and a fall in exopolysaccharide production (34 mg-7 mg; 49 mg-12 mg). MTT cytotoxicity of ZnONPs recorded an IC value of 22.06 μg/ml against KB cells. Acridine orange/ethidium bromide staining showed an increasing incidence of apoptosis in KB cells. Brine shrimp cytotoxicity using Artemia salina larvae recorded an LC value of 78.41 μg/ml. Hemolysis assay substantiated the biocompatibility of the ZnONPs. This study underscores the multifaceted application of bioinspired ZnONPs in dentistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2024.106758DOI Listing

Publication Analysis

Top Keywords

mutans mtcc
20
mutans
10
bioinspired green
8
green synthesis
8
streptomyces plicatus
8
znonps
8
mtcc mutans
8
bioinspired znonps
8
inhibitory zone
8
biofilm inhibitory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!