Urbanization of estuaries drastically changed existing shorelines and bathymetric contours, in turn modifying habitat for marine foundational species that host critical biodiversity. And yet we lack approaches to characterize a significant fraction of the biota that inhabit these ecosystems on time scales that align with rates of urbanization. Environmental DNA (or eDNA) metabarcoding that combines multiple assays targeting a broad range of taxonomic groups can provide a solution, but we need to determine whether the biological communities it detects ally with different habitats in these changing aquatic environments. In this study, we tested whether tree of life metabarcoding (ToL-metabarcoding) data extracted from filtered seawater samples correlated with four known geomorphic habitat zones across a heavily urbanized estuary (Sydney Harbour, Australia). Using this method, we substantially expanded our knowledge on the composition and spatial distribution of marine biodiversity across the tree of life in Sydney Harbour, particularly for organisms where existing records are sparse. Excluding terrestrial DNA inputs, we identified significant effects of both distance from the mouth of Sydney Harbour and geomorphic zone on biological community structure in the ToL-metabarcoding dataset (entire community), as well as in each of the taxonomic subgroups that we considered (fish, macroinvertebrates, algae and aquatic plants, bacteria). This effect appeared to be driven by taxa as a collective versus a few individual taxa, with each taxon explaining no more than 0.62% of the variation between geomorphic zones. Similarly, taxonomic richness was significantly higher within geomorphic zones with large sample sizes, but also decreased by 1% with each additional kilometer from the estuary mouth, a result consistent with a reduction in tidal inputs and available habitat in upper catchments. Based on these results, we suggest that ToL-metabarcoding can be used to benchmark biological monitoring in other urbanized estuaries globally, and in Sydney Harbour at future time points based on detection of bioindicators across the tree of life. We also suggest that robust biotic snapshots can be archived following extensive curation of taxonomic assignments that incorporates ecological affinities, supported by records from relevant and regional biodiversity repositories.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119454DOI Listing

Publication Analysis

Top Keywords

tree life
16
sydney harbour
16
life metabarcoding
8
urbanized estuaries
8
geomorphic zones
8
tree
4
metabarcoding serve
4
serve biotic
4
biotic benchmark
4
benchmark shifting
4

Similar Publications

Introduction: Tree bacterial diseases are a threat in forestry due to their increasing incidence and severity. Understanding tree defence mechanisms requires evaluating metabolic changes arising during infection. Metabolite extraction affects the chemical diversity of the samples and, therefore, the biological relevance of the data.

View Article and Find Full Text PDF

Unveiling Metabolic Crosstalk: -Mediated Defense Priming in Pine Needles Against Pathogen Infection.

Metabolites

November 2024

Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China.

Plant growth-promoting rhizobacteria (PGPR), particularly spp., are pivotal in enhancing plant defense mechanisms against pathogens. This study aims to investigate the metabolic reprogramming of pine needles induced by csuftcsp75 in response to the pathogen P9, evaluating its potential as a sustainable biocontrol agent.

View Article and Find Full Text PDF

Medicinal plants serve as vital resources for preventing and treating diseases, with their flowers, fruits, leaves, roots, or entire plants being utilized in the pharmaceutical industry or as direct therapeutic agents. During our investigation of microfungi associated with medicinal plants in Guizhou and Sichuan Provinces, China, several asexual and sexual fungal morphs were collected. Multi-locus phylogenetic analysis based on combined ITS, LSU, SSU and datasets revealed that these taxa are related to the family Dictyosporiaceae.

View Article and Find Full Text PDF

Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding.

Physiol Plant

December 2024

Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.

As an important source of pollution in the papermaking process, the presence of lignin in poplar can seriously affect the quality and process of pulping. During lignin synthesis, Caffeoyl-CoA-O methyltransferase (CCoAOMT), as a specialized catalytic transferase, can effectively regulate the methylation of caffeoyl-coenzyme A (CCoA) to feruloyl-coenzyme A. Targeting CCoAOMT, this study investigated the substrate recognition mechanism and the possible reaction mechanism, the key residues of lignin binding were mutated and the lignin content was validated by deep convolutional neural-network model based on genome-wide prediction (DCNGP).

View Article and Find Full Text PDF

Carbon reserves in coffee agroforestry in the Peruvian Amazon.

Front Plant Sci

December 2024

Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.

Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).

Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!