Unraveling the role of carboxylate groups and elastin particle size in medial calcification.

Int J Biol Macromol

Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada. Electronic address:

Published: August 2024

While it is known that calcium phosphate (CaP) minerals deposit in elastin-rich medial layers of arteries during medial calcification, their nucleation and growth sites are still debated. Neutral carbonyl groups and carboxylate groups are possible candidates. Also, while it is known that elastin degradation leads to calcification, it is unclear whether this is due to formation of new carboxylate groups or elastin fragmentation. In this work, we disentangle effects of carboxylate groups and particle size on elastin calcification; in doing so, we shed light on CaP mineralization sites on elastin. We find carboxylate groups accelerate calcification only in early stages; they mainly function as Ca ion chelation sites but not calcification sites. Their presence promotes formation (likely on Ca ions adsorbed on nearby carbonyl groups) of CaP minerals with high calcium-to-phosphate ratio as intermediate phases. Larger elastin particles calcify slower but reach similar amounts of CaP minerals in late stages; they promote direct formation of hydroxyapatite and CaP minerals with low calcium-to-phosphate ratio as intermediate phases. This work provides new perspectives on how carboxylate groups and elastin particle size influence calcification; these parameters can be tuned to study the mechanism of medial calcification and design drugs to inhibit the process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133267DOI Listing

Publication Analysis

Top Keywords

carboxylate groups
24
cap minerals
16
groups elastin
12
particle size
12
medial calcification
12
groups
8
elastin particle
8
calcification
8
carbonyl groups
8
calcium-to-phosphate ratio
8

Similar Publications

Time-dependent afterglow colored (TDAC) behavior differs from static afterglow by involving wavelength changes, enabling low-cost, high-level encryption and anti-counterfeiting. However, the existing carbon dot (CD)-based TDAC materials lack a clear mechanistic explanation and controllable wavelength changes, significantly hindering the progress of practical applications in this field. In this study, we synthesized CDs composites with customizable tunable TDAC wavelengths across the visible region.

View Article and Find Full Text PDF

Screening and isolation of polyethylene microplastic degrading bacteria from mangrove sediments in southern China.

Sci Total Environ

January 2025

College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:

Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria.

View Article and Find Full Text PDF

Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system.

View Article and Find Full Text PDF

Red-Shifted and Enhanced Photoluminescence Emissions from Hydrogen-Bonded Multicomponent Nontraditional Luminogens.

Langmuir

January 2025

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.

View Article and Find Full Text PDF

Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!