Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ubiquinone (UQ) is an essential player in the respiratory electron transfer system. In Saccharomyces cerevisiae strains lacking the ability to synthesize UQ, exogenously supplied UQs can be taken up and delivered to mitochondria through an unknown mechanism, restoring the growth of UQ-deficient yeast in non-fermentable medium. Since elucidating the mechanism responsible may markedly contribute to therapeutic strategies for patients with UQ deficiency, many attempts have been made to identify the machinery involved in UQ trafficking in the yeast model. However, definite experimental evidence of the direct interaction of UQ with a specific protein(s) has not yet been demonstrated. To gain insight into intracellular UQ trafficking via a chemistry-based strategy, we synthesized a hydrophobic UQ probe (pUQ5), which has a photoreactive diazirine group attached to a five-unit isoprenyl chain and a terminal alkyne to visualize and/or capture the labeled proteins via click chemistry. pUQ5 successfully restored the growth of UQ-deficient S. cerevisiae (Δcoq2) on a non-fermentable carbon source, indicating that this UQ was taken up and delivered to mitochondria, and served as a UQ substrate of respiratory enzymes. Through photoaffinity labeling of the mitochondria isolated from Δcoq2 yeast cells cultured in the presence of pUQ5, we identified many labeled proteins, including voltage-dependent anion channel 1 (VDAC1) and cytochrome c oxidase subunit 3 (Cox3). The physiological relevance of UQ binding to these proteins is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2024.149147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!