A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of proteins involved in intracellular ubiquinone trafficking in Saccharomyces cerevisiae using artificial ubiquinone probe. | LitMetric

Identification of proteins involved in intracellular ubiquinone trafficking in Saccharomyces cerevisiae using artificial ubiquinone probe.

Biochim Biophys Acta Bioenerg

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. Electronic address:

Published: November 2024

Ubiquinone (UQ) is an essential player in the respiratory electron transfer system. In Saccharomyces cerevisiae strains lacking the ability to synthesize UQ, exogenously supplied UQs can be taken up and delivered to mitochondria through an unknown mechanism, restoring the growth of UQ-deficient yeast in non-fermentable medium. Since elucidating the mechanism responsible may markedly contribute to therapeutic strategies for patients with UQ deficiency, many attempts have been made to identify the machinery involved in UQ trafficking in the yeast model. However, definite experimental evidence of the direct interaction of UQ with a specific protein(s) has not yet been demonstrated. To gain insight into intracellular UQ trafficking via a chemistry-based strategy, we synthesized a hydrophobic UQ probe (pUQ5), which has a photoreactive diazirine group attached to a five-unit isoprenyl chain and a terminal alkyne to visualize and/or capture the labeled proteins via click chemistry. pUQ5 successfully restored the growth of UQ-deficient S. cerevisiae (Δcoq2) on a non-fermentable carbon source, indicating that this UQ was taken up and delivered to mitochondria, and served as a UQ substrate of respiratory enzymes. Through photoaffinity labeling of the mitochondria isolated from Δcoq2 yeast cells cultured in the presence of pUQ5, we identified many labeled proteins, including voltage-dependent anion channel 1 (VDAC1) and cytochrome c oxidase subunit 3 (Cox3). The physiological relevance of UQ binding to these proteins is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2024.149147DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
delivered mitochondria
8
growth uq-deficient
8
labeled proteins
8
identification proteins
4
proteins involved
4
involved intracellular
4
intracellular ubiquinone
4
ubiquinone trafficking
4
trafficking saccharomyces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!