Advances and prospects of biomarkers for immune checkpoint inhibitors.

Cell Rep Med

Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan. Electronic address:

Published: July 2024

AI Article Synopsis

  • Immune checkpoint inhibitors (ICIs) help treat cancer by blocking certain proteins (like PD-1 and CTLA-4) that limit T cell activity, which is necessary for attacking cancer cells.
  • While ICIs can lead to lasting responses in some patients, they have drawbacks such as low efficacy, serious side effects, and high costs, making it crucial to identify which patients will benefit most from the treatment.
  • The review highlights established biomarkers, like PD-L1 expression and microsatellite instability, as well as newer potential biomarkers (e.g., gut microbiome and immune cell profiles) that could help improve patient selection and treatment outcomes.

Article Abstract

Immune checkpoint inhibitors (ICIs) activate anti-cancer immunity by blocking T cell checkpoint molecules such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Although ICIs induce some durable responses in various cancer patients, they also have disadvantages, including low response rates, the potential for severe side effects, and high treatment costs. Therefore, selection of patients who can benefit from ICI treatment is critical, and identification of biomarkers is essential to improve the efficiency of ICIs. In this review, we provide updated information on established predictive biomarkers (tumor programmed death-ligand 1 [PD-L1] expression, DNA mismatch repair deficiency, microsatellite instability high, and tumor mutational burden) and potential biomarkers currently under investigation such as tumor-infiltrated and peripheral lymphocytes, gut microbiome, and signaling pathways related to DNA damage and antigen presentation. In particular, this review aims to summarize the current knowledge of biomarkers, discuss issues, and further explore future biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293349PMC
http://dx.doi.org/10.1016/j.xcrm.2024.101621DOI Listing

Publication Analysis

Top Keywords

immune checkpoint
8
checkpoint inhibitors
8
biomarkers
6
advances prospects
4
prospects biomarkers
4
biomarkers immune
4
inhibitors immune
4
inhibitors icis
4
icis activate
4
activate anti-cancer
4

Similar Publications

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

PRDX2 induces tumor immune evasion by modulating the HDAC3-Galectin-9 axis in lung adenocarcinoma cells.

J Transl Med

January 2025

Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.

Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.

View Article and Find Full Text PDF

Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.

View Article and Find Full Text PDF

Low-risk febrile neutropenia: does combined chemotherapy/immune checkpoint inhibitor necessitate a change in approach?

Support Care Cancer

January 2025

Department of Acute Medicine, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK.

Purpose: Management of patients with low-risk febrile neutropenia in an outpatient setting guided by the MASCC score is proven to be safe and effective. Most patients on ambulatory low-risk febrile neutropenia pathways are undergoing treatment for breast cancer. Recent data has shown benefit of the addition of immune checkpoint inhibitor therapy to cytotoxic chemotherapy in the neoadjuvant setting for patients with early triple-negative breast cancer.

View Article and Find Full Text PDF

Purpose: Immune checkpoint blockades (ICBs) are promising, however they do not fit all types of tumor, such as those lack of tumor antigens. Induction of potent anti-tumor T cell immunity is critical for cancer therapy. In this study, we investigated the efficacy of immunotherapy via the immunogenic cell death (ICD) dying tumor cells in mouse models of lung metastasis and tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!