Microbial therapies have promising applications in the treatment of a broad range of diseases. However, effective colonization of the target region by therapeutic microorganisms remains a significant challenge owing to the complexity of the intestinal system. Here, we developed surface nanocoating-based universal platform (SNUP), which enabled the manipulation of controlled release and targeted colonization of therapeutic microbes in the digestive tract without the utilization of any targeting molecules. The system controlled the decomposition time of SNUP in the gut by regulating different modification layers and modification sequences on the microorganism's surface, so that the microorganism was released at a predetermined time and space. With the SNUP nanomodification technology, we could effectively deliver therapeutic microorganisms to specific complex intestinal regions such as the small intestine and colon, and protect the bioactivity of therapeutic microorganisms from destruction by both strong acids and digestive enzymes. In this study, we found that two layers SNUP-encapsulated Liiliilactobacillus salivarius (LS@CCMC) could efficiently colonize the small intestine and significantly improve the symptoms of a mouse model of Parkinson's disease through sustained secretion of γ-aminobutyric acid (GABA). This surface nanocoating-based universal platform system does not require the design of specific targeting molecules, providing a simple and universal method for colonized microbial therapy, target theranostics, precision medicine, and personalized medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.06.093 | DOI Listing |
J Colloid Interface Sci
November 2024
Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Microbial therapies have promising applications in the treatment of a broad range of diseases. However, effective colonization of the target region by therapeutic microorganisms remains a significant challenge owing to the complexity of the intestinal system. Here, we developed surface nanocoating-based universal platform (SNUP), which enabled the manipulation of controlled release and targeted colonization of therapeutic microbes in the digestive tract without the utilization of any targeting molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!