Atomically dispersed copper-zinc dual sites anchored on nitrogen-doped porous carbon toward peroxymonosulfate activation for degradation of various organic contaminants.

J Colloid Interface Sci

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Published: November 2024

AI Article Synopsis

Article Abstract

Single-atom catalysts (SACs) have been widely studied in Fenton-like reactions, wherein their catalytic performance could be further enhanced by adjusting electronic structure and regulating coordination environment, although relevant research is rarely reported. This text elucidates fabrication of dual atom catalyst systems aimed at augmenting their catalytic efficiency. Herein, atomically dispersed copper-zinc (Cu-Zn) dual sites anchored on nitrogen (N)-doped porous carbon (NC), referred to as CuZn-NC, were synthesized using cage-encapsulated pyrolysis and host-guest strategies. The CuZn-NC catalyst exhibited high activity in activation of peroxymonosulfate (PMS) for degradation of organic pollutants. Based on synergistic effects of adjacent Cu and Zn atom pairs, CuZn-NC (PMS) system achieved 94.44 % bisphenol A (BPA) degradation in 24 min. The radical pathway predominated, and coexistence of non-radical species was demonstrated for BPA degradation in CuZn-NC/PMS system. More importantly, CuZn-NC/PMS system showed generality for degradation of various refractory contaminants. Our experiments indicate that CuZn-N sites on CuZn-NC act as active sites for bonding PMS molecules with optimal binding energy, while pyrrolic N sites are considered as adsorption sites for organic molecules. Overall, this research designs diatomic site catalysts (DACs), with promising implications for wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.082DOI Listing

Publication Analysis

Top Keywords

atomically dispersed
8
dispersed copper-zinc
8
dual sites
8
sites anchored
8
porous carbon
8
degradation organic
8
bpa degradation
8
cuzn-nc/pms system
8
sites
6
degradation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!