The glycoprotein GP64 of alphabaculovirus is crucial for viral entry and fusion. Here, we investigated the N-glycosylation patterns of Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 and its signal peptide (SP) cleaved form, SPGP64, along with their impacts on viral infectivity and fusogenicity. Through deglycosylation assays, we confirmed N-glycosylation of BmNPV GP64 on multiple sites. Mutational analysis targeting predicted N-glycosylation sites revealed diverse effects on viral infectivity and cell fusion. Particularly noteworthy were mutations at sites 175, which resulted in complete loss of infectivity and fusion capacity. Furthermore, LC-MS/MS analysis uncovered unexpected non-classical N-glycosylation sites, including N252, N302, N367, and N471, with only N302 and N471 identified in SPGP64. Subsequent investigation highlighted the critical roles of these residues in BmNPV amplification and fusion, underscoring the essentiality of N367 glycosylation for GP64 fusogenicity. Our findings provide valuable insights into the non-classical glycosylation landscape of BmNPV GP64 and its functional significance in viral biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2024.110147 | DOI Listing |
J Gen Virol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
The Bombyx mori nucleopolyhedrovirus (BmNPV) is a DNA virus that affects the silkworm, , causing substantial economic losses in sericulture. This study investigates the mechanisms underlying budded virus egress, focusing on the roles of the ubiquitin-proteasome pathway (UPP) machinery. BmNPV produces two virion types: budded virions (BVs) and occlusion-derived virions (ODVs), which differ in their envelope origins and functions.
View Article and Find Full Text PDFJ Virol
November 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.
Microb Cell Fact
October 2024
Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China.
As a powerful eukaryotic expression vector, the baculovirus expression vector system (BEVS) is widely applied to the production of heterogeneous proteins for research and pharmaceutical purposes, while optimization of BEVS remains a work in progress for membrane or secreted protein expression. In this study, the impact of the signal peptide (SP) derived from Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 protein on protein expression, secretion, and the endoplasmic reticulum-associated degradation (ERAD) pathway were investigated in BmN cells and BEVS. Transient expression studies in BmN cells revealed that SP alters the localization and expression levels of recombinant proteins, reducing intracellular accumulation while enhancing secretion efficiency.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China. Electronic address:
Virology
September 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China. Electronic address:
The glycoprotein GP64 of alphabaculovirus is crucial for viral entry and fusion. Here, we investigated the N-glycosylation patterns of Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 and its signal peptide (SP) cleaved form, SPGP64, along with their impacts on viral infectivity and fusogenicity. Through deglycosylation assays, we confirmed N-glycosylation of BmNPV GP64 on multiple sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!