Bluish veil detection and lesion classification using custom deep learnable layers with explainable artificial intelligence (XAI).

Comput Biol Med

Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia. Electronic address:

Published: August 2024

Melanoma, one of the deadliest types of skin cancer, accounts for thousands of fatalities globally. The bluish, blue-whitish, or blue-white veil (BWV) is a critical feature for diagnosing melanoma, yet research into detecting BWV in dermatological images is limited. This study utilizes a non-annotated skin lesion dataset, which is converted into an annotated dataset using a proposed imaging algorithm (color threshold techniques) on lesion patches based on color palettes. A Deep Convolutional Neural Network (DCNN) is designed and trained separately on three individual and combined dermoscopic datasets, using custom layers instead of standard activation function layers. The model is developed to categorize skin lesions based on the presence of BWV. The proposed DCNN demonstrates superior performance compared to the conventional BWV detection models across different datasets. The model achieves a testing accuracy of 85.71 % on the augmented PH2 dataset, 95.00 % on the augmented ISIC archive dataset, 95.05 % on the combined augmented (PH2+ISIC archive) dataset, and 90.00 % on the Derm7pt dataset. An explainable artificial intelligence (XAI) algorithm is subsequently applied to interpret the DCNN's decision-making process about the BWV detection. The proposed approach, coupled with XAI, significantly improves the detection of BWV in skin lesions, outperforming existing models and providing a robust tool for early melanoma diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108758DOI Listing

Publication Analysis

Top Keywords

explainable artificial
8
artificial intelligence
8
intelligence xai
8
skin lesions
8
bwv detection
8
archive dataset
8
bwv
6
dataset
6
bluish veil
4
detection
4

Similar Publications

Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure.

View Article and Find Full Text PDF

Bananas (Musa spp.) are a critical global food crop, providing a primary source of nutrition for millions of people. Traditional methods for disease monitoring and detection are often time-consuming, labor-intensive, and prone to inaccuracies.

View Article and Find Full Text PDF

Whether working memory (WM) is encoded by persistent activity using attractors or by dynamic activity using transient trajectories has been debated for decades in both experimental and modeling studies, and a consensus has not been reached. Even though many recurrent neural networks (RNNs) have been proposed to simulate WM, most networks are designed to match respective experimental observations and show either transient or persistent activities. Those few which consider networks with both activity patterns have not attempted to directly compare their memory capabilities.

View Article and Find Full Text PDF

Glaucoma poses a growing health challenge projected to escalate in the coming decades. However, current automated diagnostic approaches on Glaucoma diagnosis solely rely on black-box deep learning models, lacking explainability and trustworthiness. To address the issue, this study uses optical coherence tomography (OCT) images to develop an explainable artificial intelligence (XAI) tool for diagnosing and staging glaucoma, with a focus on its clinical applicability.

View Article and Find Full Text PDF

"Multimodal Sleep Signal Tensor Decomposition and Hidden Markov Modeling for Temazepam-Induced Anomalies Across Age Groups".

J Neurosci Methods

January 2025

School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA.

Background: Recent advances in multimodal signal analysis enable the identification of subtle drug-induced anomalies in sleep that traditional methods often miss.

New Method: We develop and introduce the Dynamic Representation of Multimodal Activity and Markov States (DREAMS) framework, which embeds explainable artificial intelligence (XAI) techniques to model hidden state transitions during sleep using tensorized EEG, EMG, and EOG signals from 22 subjects across three age groups (18-29, 30-49, and 50-66 years). By combining Tucker decomposition with probabilistic Hidden Markov Modeling, we quantified age-specific, temazepam-induced hidden states and significant differences in transition probabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!