A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multivariate modeling and prediction of cerebral physiology in acute traumatic neural injury: A scoping review. | LitMetric

Multivariate modeling and prediction of cerebral physiology in acute traumatic neural injury: A scoping review.

Comput Biol Med

Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada; Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK; Pan Clinic Foundation, Winnipeg, Manitoba, Canada.

Published: August 2024

Traumatic brain injury (TBI) poses a significant global public health challenge necessitating a profound understanding of cerebral physiology. The dynamic nature of TBI demands sophisticated methodologies for modeling and predicting cerebral signals to unravel intricate pathophysiology and predict secondary injury mechanisms prior to their occurrence. In this comprehensive scoping review, we focus specifically on multivariate cerebral physiologic signal analysis in the context of multi-modal monitoring (MMM) in TBI, exploring a range of techniques including multivariate statistical time-series models and machine learning algorithms. Conducting a comprehensive search across databases yielded 7 studies for evaluation, encompassing diverse cerebral physiologic signals and parameters from TBI patients. Among these, five studies concentrated on modeling cerebral physiologic signals using statistical time-series models, while the remaining two studies primarily delved into intracranial pressure (ICP) prediction through machine learning models. Autoregressive models were predominantly utilized in the modeling studies. In the context of prediction studies, logistic regression and Gaussian processes (GP) emerged as the predominant choice in both research endeavors, with their performance being evaluated against each other in one study and other models such as random forest, and decision tree in the other study. Notably among these models, random forest model, an ensemble learning approach, demonstrated superior performance across various metrics. Additionally, a notable gap was identified concerning the absence of studies focusing on prediction for multivariate outcomes. This review addresses existing knowledge gaps and sets the stage for future research in advancing cerebral physiologic signal analysis for neurocritical care improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108766DOI Listing

Publication Analysis

Top Keywords

cerebral physiologic
16
cerebral physiology
8
scoping review
8
physiologic signal
8
signal analysis
8
statistical time-series
8
time-series models
8
machine learning
8
physiologic signals
8
models random
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!