Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive fibrotic phenotype. Immunohistochemical studies on HDAC6 overexpression in IPF lung tissues confirmed that IPF is associated with aberrant HDAC6 activity. We herein developed a series of novel HDAC6 inhibitors that can be used as potential pharmacological tools for IPF treatment. The best-performing derivative H10 showed good selectivity for multiple isoforms of the HDAC family. The structural analysis and structure-activity relationship studies of H10 will contribute to optimizing the binding mode of the new molecules. The pharmacological mechanism of H10 to inhibit pulmonary fibrosis was validated, and its ability to inhibit the IPF phenotype was also demonstrated. Moreover, H10 showed satisfactory metabolic stability. The efficacy of H10 was also determined in a mouse model of bleomycin-induced pulmonary fibrosis. The results highlighted in this paper may provide a reference for the identification of new drug molecules for the treatment of IPF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.116608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!