Direct numerical simulation of homogeneous isotropic turbulence shows pronounced clustering of inertial particles in the inertial subrange at high Reynolds number, in addition to the clustering typically observed in the near dissipation range. The clustering in the inertial subrange is characterized by the bump in the particle number density spectra and is due to modulation of preferential concentration. The number density spectrum can be modeled by a rational function of the scale-dependent Stokes number.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.234001DOI Listing

Publication Analysis

Top Keywords

clustering inertial
12
inertial subrange
12
number density
8
number
5
heavy particle
4
clustering
4
particle clustering
4
inertial
4
subrange high-reynolds
4
high-reynolds number
4

Similar Publications

Purpose: To investigate technical regulation mechanisms of long-distance swimmers that differentiate optimal pacing strategies and the underlying kinematic parameters.

Methods: Twenty-one national and international swimmers were equipped with a sacrum-worn inertial measurement unit performed during 5000-m indoor French championships. Percentage of critical swimming speed (CSS), stroke rate, stroke length, jerk cost, stroke index, and mechanical proficiency score were computed by lap.

View Article and Find Full Text PDF

Validation and Analysis of Recreational Runners' Kinematics Obtained from a Sacral IMU.

Sensors (Basel)

January 2025

Sport and Physical Activity Research Centre, Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Rd, Sheffield S9 3TY, UK.

Our aim was to validate a sacral-mounted inertial measurement unit (IMU) for reconstructing running kinematics and comparing movement patterns within and between runners. IMU data were processed using Kalman and complementary filters separately. RMSE and Bland-Altman analysis assessed the validity of each filtering method against a motion capture system.

View Article and Find Full Text PDF

Friction is a critical factor in the proper functioning of human organs as well as in the potential development of disease. It is also important for the design of diagnostic and interventional medical devices. Nanoscale surface roughness, viscoelastic or plastic deformations, wear, and lubrication all influence the functions of individual cells.

View Article and Find Full Text PDF

The aim of this study was to compare the acute effect of three cluster set (CS) intra-set rest intervals (15 s, 30 s, and 45 s) on mechanical performance measures during a flywheel resistance training session. Twelve amateur male field sport athletes attended three training measurement sessions (separated by 14 days of wash-out), consisting of four sets of nine repetitions (as cluster-blocks: 3 + 3 + 3), using a 0.050 kg·m inertial load.

View Article and Find Full Text PDF

Fatigue plays a critical role in sports science, significantly affecting recovery, training effectiveness, and overall athletic performance. Understanding and predicting fatigue is essential to optimize training, prevent overtraining, and minimize the risk of injuries. The aim of this study is to leverage Human Activity Recognition (HAR) through deep learning methods for dimensionality reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!