Microswimmers Knead Nematics into Cholesterics.

Phys Rev Lett

Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France.

Published: June 2024

The hydrodynamic stresses created by active particles can destabilize orientational order present in the system. This is manifested, for example, by the appearance of a bend instability in active nematics or in quasi-two-dimensional living liquid crystals consisting of swimming bacteria in thin nematic films. Using large-scale hydrodynamics simulations, we study a system consisting of spherical microswimmers within a three-dimensional nematic liquid crystal. We observe a spontaneous chiral symmetry breaking, where the uniform nematic state is kneaded into a continuously twisting state, corresponding to a helical director configuration akin to a cholesteric liquid crystal. The transition arises from the hydrodynamic coupling between the liquid crystalline elasticity and the swimmer flow fields, leading to a twist-bend instability of the nematic order. It is observed for both pusher (extensile) and puller (contractile) swimmers. Further, we show that the liquid crystal director and particle trajectories are connected: in the cholesteric state the particle trajectories become helicoidal.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.238301DOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
particle trajectories
8
liquid
5
microswimmers knead
4
knead nematics
4
nematics cholesterics
4
cholesterics hydrodynamic
4
hydrodynamic stresses
4
stresses created
4
created active
4

Similar Publications

Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

Theoretical and Experimental Research on the Short-Range Structure in Gallium Melts Based on the Wulff Cluster Model.

Materials (Basel)

December 2024

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.

In this paper, the short-range ordering structures of Ga melts has been investigated using the Wulff cluster model (WCM). The structures with a Wulff shape outside and crystal symmetry inside have been derived as the equivalent system to describe the short-range-order (SRO) distribution of the Ga melts. It is observed that the simulated HTXRD patterns of the Ga WCM are in excellent agreement with the experimental data at various temperatures (523 K, 623 K, and 723 K).

View Article and Find Full Text PDF

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!